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  Abstract 
  We analyze the contribution of rising longevity to the increase in wealth inequality in the U.S. 

over the past seventy years. To do so, we construct an overlapping generations (OLG) model 
with multiple sources of inequality, carefully calibrated to the data. Our key finding is that 
improvements in old-age longevity have a substantial impact on wealth inequality, accounting 
for approximately half the effect of income inequality, which has been the focus of much of 
the existing literature. In contrast, the impact of tax changes is relatively minor. The 
contribution of rising longevity is expected to continue driving wealth inequality upward in the 
coming decades. 
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1 Introduction

We study the role of longevity and rising income inequality in the growth of wealth inequality in
the United States. A large body of literature documents a rise in income inequality (e.g. Chetty
et al., 2017; Guvenen et al., 2022) and attributes growing wealth inequality in the U.S. to rising
income inequality (e.g. Saez and Zucman, 2016; Piketty et al., 2018). Hubmer et al. (2021) argue
that continuing with the 1970s redistribution in the tax system into the next decades could have
prevented the rise in wealth inequality even in the presence of high income inequality.

At the same time, the U.S. experienced a colossal increase in life expectancy, especially in old-
age longevity. Between 1970 and 2015, life expectancy at 65 has improved from slightly above 14
years to nearly 19 years. Through the lens of any standard overlapping generations model, this rise
in longevity can translate to an increase in wealth inequality due to two mechanisms. First, since
individuals expect to live longer, a behavioral effect involves higher wealth accumulation at the peak
of the life cycle for each subsequent birth cohort.Second, a composition effect appears due to a rising
share of individuals close to the peak of wealth accumulation. In this paper, we quantify the role of
demographics in rising wealth inequality and juxtapose it with income inequality.

The two drivers of wealth inequality – longevity and income inequality – yield markedly different
policy recommendations. If driven by longevity, the rise in wealth inequality merely indicates that
households internalize the changing demographic trends in their lifetime optimization. If caused by
the rise of income inequality, it has a number of implications (such as an amplification of labor
market processes to old age poverty) that necessitate policy interventions. Hence, emerges policy
relevance of our study.

Our main contribution is demonstrating that demographic factors significantly influence wealth
inequality. We build a general equilibrium overlapping generations model that replicates key trends
in the data, including a decline in the wealth Gini coefficient until the late 1970s, followed by a
5-point increase. Individuals in the model are ex-ante heterogeneous, differing by education, which
affects their mortality risk and labor income. They face uncertainty throughout life due to income
risk, discount rate shocks, and risky returns on savings.

The model is carefully calibrated to U.S. data. It replicates the 1930s economy as the initial
steady state and tracks wealth inequality dynamics during the transition to a new steady state. We
model changes in longevity using survival probabilities aligned with demographic data and projections.
We allow for multiple sources of changes in the income distribution: time-varying shares of college-
educated individuals, skill premia, and evolving income risk for subsequent cohorts. Redistribution
mechanisms consistent with the data, including varying tax rates and income tax progressivity, are
also incorporated.

We use this model to perform counterfactual simulations by setting mortality risk, income mech-
anisms, and taxes to their 1950s levels. We show that the impact of longevity is quantitatively
substantial, with the size of the effect roughly half as large as that of the observed changes in in-
come inequality. Our findings also reveal that the behavioral channel, driven by consumption-savings
responses to longer lifespans, plays a larger role than changes in demographic structure. In contrast,
the contribution of the tax system is relatively minor. Finally, using demographic projections, we
examine the future trajectory of wealth inequality and find that current forces will continue to amplify
inequality for another half-century.

The related literature We build on a rich tradition of quantitative macroeconomic models (orig-
inating from Bewley, 1977). The early models faced challenges in replicating the degree of wealth
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inequality observed in the data, even after accounting for idiosyncratic income shocks.1 Since then,
the literature has branched into three strands reflecting the role of different forms of heterogene-
ity in shaping wealth inequality: (i) heterogeneous incomes, (ii) heterogeneous savings, and (iii)
heterogeneous returns on assets.

For heterogeneous incomes, particularly the thickness of the upper tail plays a central role. Cas-
taneda et al. (2003); Benhabib et al. (2019); Gabaix et al. (2016) demonstrate that persistent and
skewed earnings processes (also known as “superstars”) generate wealth distributions that resemble
empirical patterns. Taxing “super-luck” improves welfare and optimal taxation of “superstars” re-
duces wealth concentration due to reduced income concentration (Kindermann and Krueger, 2022).
An alternative approach shows that even if the increase in income inequality is transitory, the effects
on wealth inequality are partially persistent (Lippi and Perri, 2023). Kaymak and Poschke (2016)
attribute over half of the post-1960 rise in U.S. wealth inequality to increasing earnings inequality.
Redistribution through taxation plays an important role as well. The decline in redistribution can
explain the evolution of the top income shares (Aoki and Nirei, 2017) and wealth inequality (Hubmer
et al., 2021).

Another important mechanism is the heterogeneity in savings rates. Higher savings rates are
observed among the wealthy (Straub, 2019).2 De Nardi (2004) and Cagetti and De Nardi (2006)
show that the variation of bequests is instrumental in replicating key features of observed wealth
distributions.

For heterogeneity of returns on assets, the literature offers two distinct channels. First, a strand
of research shows that rates of return generally increase with wealth (see Kuhn et al., 2020; Hubmer
et al., 2021). Second, the literature emphasizes the theoretical and quantitative role of the dispersion
of the returns (see Benhabib et al., 2011, 2019; Fagereng et al., 2020; Bach et al., 2020; Gomez,
2024). Gomez and Gouin-Bonenfant (2024) integrate both of these channels, demonstrating that
they jointly contribute to increasing inequality at the top of the wealth distribution.

The role of demographics is increasingly being recognized in macroeconomic models.3 However,
the role of demographics in wealth inequality is largely unexplored. Krueger and Ludwig (2007) use
an OLG model to compare wealth inequality in the U.S., EU, and OECD under different longevity
and immigration scenarios but do not isolate the effect of rising longevity. Many other studies on
wealth inequality rely on infinitely lived agent models (e.g. Aoki and Nirei, 2017; Hubmer et al.,
2021),4 or focus on steady states and simulate transition paths for policies (e.g. Kindermann and
Krueger, 2022). To the best of our knowledge, this is the first study to systematically quantify the
role of rising longevity in explaining the dynamics of wealth inequality.

In comparison to the existing literature, our paper offers several novelties. First, we focus explicitly
on the effects of rising longevity on wealth inequality. Using a rich OLG model carefully calibrated to
data, we replicate the observed dynamics of wealth inequality, which allows us to isolate the role of
demographics by removing time variation in selected model inputs. Second, we account for multiple

1For example, Aiyagari (1994) calibrated his model to match PSID data and produced a wealth Gini coefficient of
40, that is roughly a half the empirical estimate of 80.

2Empirical evidence is mixed: Fagereng et al. (2019) show that net savings rates are relatively constant across the
wealth distribution in Norway. Behavioral heterogeneity was used to replicate savings rate heterogeneity in structural
models. The extensive literature explores heterogeneity in preferences (e.g. Epper et al., 2020) as well as financial
literacy (e.g. Lusardi et al., 2017).

3The demographic transition has been a key driver of the decline in observed (Eggertsson et al., 2019) and natural
(Bielecki et al., 2020) interest rates in the recent decades. In a deterministic OLG setup, Gagnon et al. (2021)
demonstrate that demographics contributed to permanent declines in real GDP growth, aggregate investment rates,
and safe asset yields in the US. In a stochastic OLG setup, Auclert et al. (2021) predict that aging will raise wealth-
to-GDP ratios, lower asset returns, and exacerbate global imbalances.

4Kaymak and Poschke (2016) use a simplified two-stage life cycle model with working and retirement phases.
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potential channels of spillover from income inequality to wealth inequality. Our model incorporates
numerous sources of idiosyncratic shocks. We can thus compare the strength of demographics with
other channels, such as income inequality and taxation. Last but not least, we study wealth inequality
for the “bottom 99%”.5 In fact, the rise of wealth inequality irrespective of the wealthiest percentile
of the population was large and demographic factors have played an important role in this process.
Demographics likely have less impact on top wealth inequality. Given the focus of our study, our aim
is to analyze the broader wealth distribution rather than its extremes. For this reason, we use the
Gini coefficient as our primary measure of wealth inequality.

2 Model

We construct a general equilibrium OLG model with heterogeneous households. Agents have perfect
foresight with respect to aggregate variables. We describe the household sector below. The rest of
the model is relegated to the Online Appendix A.

2.1 Population dynamics

Households are finitely lived, their age is denoted by j ∈ {1, . . . , J}. Let s ∈ {L,H} be the level
of education of a household, with s = L being less than college, and s = H being some college
education or more. The size of the cohort j in period t with educational level s is Nj,t,s and Nj,t

denotes the total size of the population of age j at time t. The size of each new cohort N1,t and the
fractions by education status s are determined exogenously. The s-specific conditional probability of
survival from age j to j + 1 in period t is ψs,j,t. Finally, the total population is Nt =

∑J
j=1Nj,t.

The size of cohort j in period t is Nj,t =
∑

s∈{L,H}Ns,j,t, with Ns,j,t denoting the size of
population with education level s of age j at time t. The size of each new cohort of education s,
Ns,1,t, is determined exogenously. Given education level, specific conditional probability of survival
from age j to age j+1 in period t is ψs,j,t the population evolves according toNs,j+1,t+1 = ψs,j,tNs,j,t.

2.2 Budget constraint

Let j̄ denote the retirement age. Households with j < j̄ face the wage rate wtes,j,t, where wt

denotes wage per unit of efficiency labor (marginal product of aggregate labor), es,j,t represents
idiosyncratic wage variation due to the education level s, age j, and a random component ω which
follows a first-order Markov chain with states ωs,j,t and transition matrix πω

s,j,t (ωs,j+1,t+1 | ωs,j,t).6
The details of the es,j,t are discussed later in conjunction with equation (3). Households with j ≥ j̄

have es,j,t = 0.
Labor income of a working household is subject to a social security contribution at the rate

τss,t. The base of the labor income tax is thus ys,j,t = (1 − τss,t)wtes,j,tℓs,j,t, where ℓs,j,t is the
labor supply. Households pay progressive labor income tax Tt (ys,j,t, ȳt) given by Tt (ys,j,t, ȳt) =
ys,j,t − (1 − τℓ,t)

(
ys,j,t

ȳt

)1−λt

ȳt, where the elasticity of after-tax to pre-tax income equals 1 −λt, and
τℓ,t determines the average tax rate. The average labor income tax base in period t is denoted by
ȳt.7

Let as,j,t denote the holdings of assets at the beginning of the period t. Asset markets are
incomplete, households can only self-insure against fluctuations in idiosyncratic labor productivity by

5An interesting evidence on wealth inequality dynamics from the Forbes 400 list, is provided by Gomez (2023).
6Note that states and the transition matrix depend on the education level s, age j, and time period t.
7The after-tax labor income can be thus expressed as a weighted geometric mean (1 − τℓ,t) y1−λt

s,j,t ȳλt
t .
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saving in a risky asset that pays a gross after-tax return 1 + r̃t + ϵrs,j,t, where r̃t is a deterministic
aggregate component and ϵrs,j,t is an i.i.d. idiosyncratic return shock, ϵrs,j,t ∼ N

(
0, σ2

r

)
. Assets

holdings are subject to a borrowing constraint, as,j+1,t+1 ≥ 0.
Households’ resources consist of after-tax labor income ys,j,t −Tt (ys,j,t, ȳt), current wealth along

with the interest accrued
(
1 + r̃t + ϵrs,j,t

)
as,j,t, pension benefits bs,j,t (described in Appendix A),

and of accidental bequests Γs,j,t. The bequests are evenly distributed between all the surviving
households of the same education level within a birth cohort. Households use these resources to
purchase consumption goods cs,j,t and accumulate wealth, and τc,t denotes the consumption tax
rate. The budget constraint is thus:

as,j+1,t+1 + (1 + τc,t) cs,j,t = ys,j,t − Tt (ys,j,t, ȳt) +
(
1 + r̃t + ϵrs,j,t

)
as,j,t + bs,j,t + Γs,j,t. (1)

2.3 Social security

We replicate the main features of the current U.S. pension system: the average index of monthly
wages accumulation (AIME) and the cap imposed by Old Age, Survivors, and Disability Insurance
(OASDI). Old age benefits bs,j,t at retirement age j̄ depend on the replacement rate pj̄,t, benefit
drawing rights fs,j̄,t which reflect AIME accumulation, and average earnings in the economy wtetℓt.
A time-varying scaling factor ϱj̄,t adjusts the generosity of benefits to maintain a data-consistent
ratio of benefits to GDP. The detailed formulae bs,j,t, pj̄,t and fs,j̄,t as well as rationale for ϱj̄,t are
relegated to the Online Appendix A.1

2.4 Household problem

Households discount future with δs,j,t, which follows a first-order Markov chain, and the conditional
survival probability ψs,j,t. The individual state variables zs,j,t of the household with education level
s and age j in period t are: the level of assets as,j,t, the pension entitlements fs,j,t, the level of
individual labor productivity ωs,j,t, the level of individual discount factor δs,j,t, and the rate of return
shock ϵrs,j,t; zs,j,t =

(
as,j,t, fs,j,t, ωs,j,t, δs,j,t, ϵ

r
s,j,t

)
∈ Ω. We assume that households of age j = 1

enter with no assets, as,1,t = 0.
The optimization problem of the household in a recursive form is:

Vs,j,t (zs,j,t) = max
(cs,j,t,ℓs,j,t,fs,j+1,t+1,as,j+1,t+1)

1
1 − θ

[
cϕ

s,j,t (1 − ℓs,j,t)1−ϕ
]1−θ

+ψs,j,tδs,j,tE [Vs,j+1,t+1 (zs,j+1,t+1) |zs,j,t] , (2)

subject to the budget constraint in equation (1), formulas for pensions in equations (A.1) and (A.2),
and the borrowing constraint as,j+1,t+1 ≥ 0, with θ and ϕ determining relative risk aversion and
leisure preference, respectively.

2.5 Production function

A representative firm uses capital Kt and labor Lt to produce final output Yt according to a Cobb-
Douglas production function Yt = Kαt

t (AtLt)1−αt , with labor augmenting technological progress
At+1/At = 1 + γA

t+1. Note that both capital income share in total output αt and the depreciation
rate of capital dt are time varying. Since our production sector is standard, we relegate the description
to the Online Appendix A.2.
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2.6 Government and Model Closure

Additionally, our model features the government that collects capital income taxes τk,t, labor income
taxes Tt(ys,j,t(zs,j,t), ȳt), and consumption taxes τc,t. The total taxes collected Tt are used to finance
government expenditures Gt and subsidize the social security system, with the subsidy being denoted
as St. Thus, Gt + St = Tt. More details on government and market clearing conditions with the
definition of equilibrium are relegated to the Online Appendices A.3 and A.4, respectively.

3 Calibration

One period in the model corresponds to five years. In all experiments, we study the transition from
the initial steady state in the year 1935 to the final steady state in the distant future. The model is
calibrated to match dynamic features of the U.S. economy. This implies that many model parameters
vary along the transition path, in line with the evolution of real world analogs. Whenever available,
we rely on observational data or publicly available forecasts. In a few cases, parametrization of the
early years of our model requires extrapolation of the time series to the past and in all instances
we also extrapolate the trends in the data to the future years, to obtain a sufficiently distant final
steady state for simulations. Below we describe the data sources and target values (if constant).
The details for extrapolating the observational data are discussed in Online Appendix B.

3.1 Demographics

We use population data from the Centers for Disease Control and Prevention (CDC). The five-year
averages for births and survival probabilities are provided by the United Nations Population database.
This data covers historical births and survival probabilities as well as provides a demographic forecast
until 2100. We assume that after that year the birth rate continues at 0.06% per year, and survival
probabilities stabilize at their 2100 levels.

We calculate the share of households with at least some college (s = H in our model) for each
entry cohort using the individual level data from the U.S. Census and American Community Survey.
The path of these shares in the data, which we use as inputs for our model, is shown in Figure
B.1 of Online Appendix B.1. The survival probabilities in the model, ψs,j,t, depend on the level of
education. To capture this heterogeneity, we use U.S. death certificate data from Case and Deaton
(2021) that include survival probabilities by cohort, age, and college attainment. The details of
processing the data as well as an extrapolation to the periods not covered by the data are described
in Online Appendix B.1.

3.2 Income dynamics

We assume an idiosyncratic component of wages, es,j,t, is given by

ln es,j,t = βs,t + ζs,j + ωs,j,t, (3)

where βs,t is a time-varying component common to all households with the same education level
s (college premium), ζs,j is a type-specific deterministic age profile and ωs,j,t follows a first-order
Markov chain with states ωs,j,t and transition matrix πω

s,j,t (ωs,j+1,t+1 | ωs,j,t).
We normalize βL,t = 1 and use the (log) college wage premium series from Autor et al. (2020) to

construct our measure of βH,t and assume it constant after 2020 (see Figure B.3). We estimate the
parameters of income processes using the 1970-2019 waves of the Panel Study of Income Dynamics
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(PSID). We apply Deaton and Paxson (2000) decomposition to obtain deterministic age profiles
ζs,j , adjusting for cohort and time effects (see Online Appendix B.2.3). We use residuals from this
decomposition to estimate a first-order auto-regressive income process:

ω′ = ϱω,sω + ϵω, ϵω ∼ N
(
0, σ2

ω,s,j,t

)
. (4)

We allow for different auto-correlation parameters ϱω,s for s ∈ {L,H} and for cohort-specific vari-
ances σ2

ω,s,j,t. The point estimates are ϱω,L = 0.980 and ϱω,H = 0.985. We show our estimates of
variances in Figure B.5. We adjust estimates of ϱω,s, σ

2
ω,s,j,t to reflect the fact that one period in

the model corresponds to five years and to have the unconditional expected value E [exp(ω)] = 1
for all cohorts. We then approximate each resulting AR(1) process with a 5-state Markov chain by
the Rouwenhorst method.

We augment the 5-state Markov chains with an additional 6th state to account for “superstars”.
This state can be reached only from the 5th state and upon exiting it the household moves to the 3rd
state (corresponding to the average productivity for its education level). We calibrate the probability
of moving to and falling from the 6th state to match the share of “superstars” in the PSID data, see
Online Appendix B.2.3.

3.3 Idiosyncratic returns

Returns on assets in our model consist of two parts: a common aggregate component r̃t determined
by the marginal product of capital and taxes, and an i.i.d. component ϵs,r,t with mean zero. To
calibrate the standard deviation of ϵrs,j,t, we follow Hubmer et al. (2021). They consider four classes
of assets: a risk-free asset, public equity, private equity, and housing, and calculate standard deviation
of annual returns by asset class and wealth group (percentiles of wealth distribution). Next, they
adopt portfolio weights on these four classes of assets by wealth group from Bach et al. (2020). This
allows them to calculate standard deviation of returns on assets by wealth group, σr,group. We take
their numbers and calculate average shares of aggregate wealth held by these wealth groups between
1989 and 2022, ϖgroup. We provide more details in Online Appendix B.3. The variance of five-year
returns in our model is thus σ2

r = 5
∑

groupϖ
2
group · σ2

r,group. The implied standard deviation σr is
0.123.

3.4 Macroeconomic parameters

Production function We use Penn World Tables 10, published by the Groningen Growth and
Development Center (GGDC), to calibrate all the time-varying parameters of the production function.
The data for depreciation were adjusted to five-year periods. We set αt to match labor share in the
U.S. in 1950-2019. Labor-augmenting technological progress taken from GGDC is adjusted for time-
varying labor share as well as for the changing composition of the labor force (increased share of
individuals with s = H). The details of processing data and extrapolation are relegated to Online
Appendix B.4.

The government Tax rates are calibrated using Mendoza et al. (1994) approach. The rates
which match the shares of revenues from capital income tax, labor income tax, and consumption tax
observed in the data are obtained from McDaniel (2007). To calibrate labor income tax progressivity,
we follow Barro and Sahasakul (1983) and Mertens and Montiel Olea (2018). The government
expenditures are determined as a residual to satisfy the government budget constraint. The details
are reported in Online Appendix B.5.
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Social security To set the effective rate of social security contribution τss,t we use data on social
security contributions relative to GDP from the OECD. τss,t determines the ratio of social security
contributions to labor income, and the ratio of labor income to GDP (labor share) is pinned down by
1 − αt. We set retirement age j̄ = 10 to reflect the effective retirement age of 66. The parameters
used to calculate pensions in the social security system are taken from McGrattan and Prescott
(2017) and remain constant over time. We set parameters controlling the replacement rate pJ̄ ,t to
match the ratio of pensions to GDP. The details are provided in Online Appendix B.6.

3.5 Preferences

We calibrate the preference for consumption parameter ϕ to match the observed share of hours
worked in the economy, which is 33% on average. The relative risk aversion θ is set to 1.5 (in
line with Hubmer et al., 2021; Kindermann and Krueger, 2022). The discount factor δs,j,t follows
a first-order Markov chain with four states. States 1 to 3 and transition probabilities between them
are obtained by discretization of an AR(1) process

δ′ = (1 − ϱδ) δ̄ + ϱδδ + ϵδ, ϵδ ∼ N
(
0, σ2

δ

)
,

with auto-correlation ϱδ = 0.9925 and standard deviation σδ = 0.0065 corresponding to values
reported in Hubmer et al. (2021).8 The fourth state is δs,j,t = 0 and the probability of moving
to it from any state is 0.05, calibrated to match the share of hand-to-mouth agents in the data.9
Once in this state, agents draw δs,j,t from its stationary distribution. This means that they can stay
in this state for consecutive periods. Similarly, agents with j = 1 draw δs,j,t from the stationary
distribution. We set δ̄ to match the pre-tax rate of return on capital of 8% in the initial steady state.
The resulting value is 1.01.

4 Model data fit

We begin by evaluating the ability of our model to replicate observed trends in wealth inequality. Our
primary focus is on the impact of demographic factors. Since these factors are unlikely to significantly
affect the wealth share of the top 1%, we rely on the Gini coefficient as our inequality measure. Figure
1 demonstrates the comparison of model simulations with the data. It shows changes in the Gini
coefficient over time, normalized to 1950. The bars represent observed changes from the data, while
the solid line reflects the corresponding model simulations.

8Discount factor shocks serve as a mechanism to introduce heterogeneity in old-age saving behavior, functioning
similarly to a "warm glow" bequest motive or health shocks. The value of ϱδ implies that, on average, half of the gap
between δ and δ̄ closes within one generation. This level of persistence mimics a structure where altruism is present,
with parents caring about the utility of their children. We deliberately chose not to calibrate σδ to exactly match
the wealth Gini observed in the data, opting instead for the value reported by Hubmer et al. (2021). One reason for
this choice is our focus on the “bottom 99%” of the wealth distribution, as we believe demographic processes are less
relevant for the top 1%. Using discount factor shocks to match the wealth Gini exactly would risk overemphasizing
a factor that may not fully reflect real-world dynamics. This consideration is especially important because our model
excludes certain features—such as entrepreneurship or intergenerational transfers—that are recognized in the literature
as important for explaining wealth inequality. On the other hand, excluding discount factor shocks entirely would leave
the model with fewer sources of inequality, potentially exaggerating the role of demographics. A sensitivity analysis in
Online Appendix F.3 confirms this conjecture.

9Zeldes (1989) reports that the share of hand-to-mouth agents (households with sufficiently low net worth) was
approximately 29% in the earlier waves of the PSID, while Aguiar et al. (2024) reports a share of 23.3% in more recent
waves. In our model, the target is an average share of agents aged 25–64 with zero assets, set at 27.5% over the period
1980–2020.
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Figure 1: Evolution of wealth inequality: model vs. data
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Note: We use household wealth data, measured as net assets, from the extended sample of the Survey of Consumer
Finances (SCF, Kuhn et al., 2020). Observations with negative assets are excluded, as the model imposes a non-
negativity constraint on asset accumulation. Population weights are applied to the SCF data, and observations are
grouped into five-year bins. In the model, probability mass is similarly applied as weights. The black line represents
the change in the wealth Gini coefficient in the model (measured in percentage points relative to 1950), while the gray
bars show the change in the wealth Gini coefficient derived from the SCF data.

From 1950 to 1975, the wealth Gini coefficient in the data declines by approximately three points,
a trend that the model successfully reproduces. Between 1975 and 2015, the wealth Gini coefficient
in the data increases by eight points, with the model explaining more than half of this rise. Overall,
the model effectively captures both the reduction in inequality prior to 1975 and its subsequent
growth.

Most macroeconomic parameters in the model are directly sourced from observational data.
However, the model endogenously determines the interest rate, hours worked, the size of social
security. We can also compare the ratio of bequests to GDP. For the interest rate, our baseline
simulation captures the major trends and some fluctuations observed over time. The data show a
decline in interest rates from approximately 8% in 1950 to just over 7% in 2015. In our model, this
decline is slightly more pronounced, with the rate falling to just below 7%, see Figure D.1 in Online
Appendix D.10

Our baseline simulation matches the long-run behavior of average hours worked per capita ob-
served in the data. In particular, consistent with the evidence for the U.S in Boppart and Krusell
(2020), average hours in the model do not exhibit any long-run trend. The model generates slightly
larger fluctuations in hours than in the data and cannot reproduce behavior of hours inflicted by the
Great Recession, see Figure D.2 in Online Appendix D.

The model replicates both the levels and the time variation of the GDP share of pension benefit
expenditures very well. Additionally, the future path of benefits implied by our model aligns closely
with projections from the Congressional Budget Office. In Figure D.3 of Online Appendix D, we plot
the time evolution of the model’s pension benefit expenditures against data from the U.S. Social
Security Administration. Finally, the average ratio of bequests to GDP in the model is slightly above
5%; further details are provided in Online Appendix D.

Futher, we examine the Gini coefficient and Lorenz curves for income generated by the model
10Our model does not include government debt to avoid the arbitrary ad hoc assumptions about its evolution in

counterfactual scenarios. Consequently, the increased savings in our model result in a more pronounced "savings glut"
mechanism compared to the data.
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and compare them with observational data from the PSID, aggregated by decades for the 1970s,
1980s, 1990s, 2000s, and 2010s. The model closely replicates the observed income distribution,
despite income inequality not being a direct target during calibration. While income shocks and life
cycle patterns were estimated from PSID data, additional features of the income process, such as
the college premium and college shares, were derived from external sources,11 see Figure D.4 in the
Online Appendix D.

Finally, we compare the composition of changes in wealth inequality as represented by the model
with the data. Using the extended SCF sample provided by Kuhn et al. (2020), we decompose
a Generalized Entropy measure of inequality into between-cohort and within-cohort components.
Although the data show larger magnitudes than the model, the patterns produced by the model align
remarkably well with empirical regularities, see Figure D.5 in the Online Appendix D.

5 Results

In this section, we show the results of our study. We start by describing the contribution of rising
longevity to wealth inequality since 1950 and compare it with other important factors discussed in
the literature, such as taxes and incomes.

5.1 Rising longevity and evolution of wealth inequality

We begin by examining the impact of rising longevity on wealth inequality. One significant driver is
the composition (structural) effect, which arises because the distribution of assets across age groups
typically follows a hump-shaped pattern. In any life-cycle economy, even if agents are identical in all
aspects except age, the Gini coefficient will exceed zero. As population ages, the share of younger
individuals with fewer assets declines, while the proportion of older individuals nearing retirement,
who hold more assets, increases. This shift affects the Gini coefficient, though the magnitude and
direction of its impact depend on quantitative factors.

Another critical factor is the behavioral effect, which stems from increasing life expectancy. As
individuals plan for longer retirement periods, they adjust their savings behavior, accumulating more
assets over their lifetimes. This increased saving intensifies the disparity between younger individuals
and those nearing retirement, thereby contributing to rising wealth inequality. Evidence supporting
this effect is provided by Bauluz and Meyer (2024).

To quantify these effects, we simulate a counterfactual scenario in which mortality rates are
fixed at their 1955 levels and compare it to the baseline scenario, where mortality rates evolve as
observed historically. The initial conditions are identical, given by the same initial steady state at
t = 0 (corresponding to the year 1935). The respective paths of mortality rates in the baseline and
counterfactual scenarios are revealed at t = 1 (year 1940). The resulting population structures for
both scenarios are presented in Figure C.1 in Online Appendix C. Figure 2 shows the evolution of
the wealth Gini coefficient under these two scenarios.

11Note that we estimate a process for idiosyncratic productivity shocks, not for the entire labor income. Given this
process and aggregate variables, labor supply is chosen optimally by the agents within the model. The ability of the
model to replicate the observed income distribution means that the model can generate comovement between hourly
wages and hours worked consistent with the data.
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Figure 2: Baseline vs counterfactual scenario of constant longevity

Note: The black line shows the level of the wealth Gini coefficient in the baseline model. The violet line illustrates the
wealth Gini coefficient from a counterfactual simulation where mortality rates, used both in calculating the population
structure and in the consumer problem, are held constant at their 1955 levels, while all other aspects align with the
baseline simulation.

In the absence of changes in longevity, the Gini coefficient declines by 0.9 points more between
1950 and 1975 than in the baseline scenario, as illustrated by the difference between the two lines in
Figure 2. This suggests that rising longevity during this period increased wealth inequality by nearly
one point. After 1975, rising longevity continues to drive inequality upward, with their cumulative
impact reaching approximately 1.5 points by 2015 and 2050.

To disentangle the relative contributions of demographic factors to wealth inequality, we construct
a bar graph in Figure 3 (scenario [S1]Longevity:1955). This analysis is based on a comparison between
the baseline scenario and a counterfactual scenario with fixed mortality rates, both depicted in Figure
2. In this context, Gb

t represents the wealth Gini coefficient from the baseline model, while Gc
t denotes

the coefficient from the counterfactual scenario. The differences between the two scenarios for a given
period t are calculated as ∆t = Gb

t − Gc
t , and these differences are visualized as bars in Figure 3

for t ∈ {1975, 2015, and2050} are 0.9, 1.4, and 1.45 Gini points, respectively (corresponding to the
differences between the two lines in Figure 2). A positive bar value indicate that a factor increases
wealth inequality, while a negative values reflects mitigating effect.
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Figure 3: Impact of rising longevity on wealth inequality (in Gini points)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Gini points

2050

2015

1975

[S1]Longevity:1955 [S1a]ExpectedLongevity:1955

[S1b]PopStructure:1955

Note: The bars depict the differences in the wealth Gini coefficient for a given year between the baseline scenario and
the respective counterfactual scenarios, as defined by the formula ∆t = Gb

t − Gc
t . A positive value indicates that

a given factor contributed to the increase of the Gini coefficient, while a negative value indicates a decrease. The
counterfactual scenarios are defined as follows. [S1]Longevity:1955 This scenario fixes mortality rates at their 1955
levels for both population structure and the consumer problem, while all other aspects remain as in the full model.
[S1a]ExpectedLongevity:1955 This scenario fixes only the mortality rates in the consumer problem at their 1955 levels,
with all other aspects unchanged from the full model. [S1b]PopStructure:1955 This scenario fixes the mortality rates
used to compute the population structure at their 1955 levels, while the rest of the model remains unchanged.

To further isolate the composition and behavioral effects, we perform two counterfactual simu-
lations. The [S1a]ExpectedLongevity:1955 scenario fixes mortality rates in the consumer problem,
isolating the behavioral effect. The [S1b]PopStructure:1955 scenario fixes mortality rates in popula-
tion structure, isolating the composition effect. Our analysis reveals that these two effects influence
inequality in opposite ways. The behavioral effect amplifies wealth inequality, with greater asset
accumulation to fund longer retirements, the gap between younger individuals and those nearing
retirement widens. In contrast, the composition effect reduces wealth inequality, with changing
age distribution of the population there is fewer younger individuals (who hold limited assets) and
more older individuals (who hold substantial assets). However, the behavioral effect outweighs the
composition effect, leading to a net rise in wealth inequality.

5.2 Relative importance of rising longevity for wealth inequality

We compare the size of the effects driven by demographics with other key factors identified in the
literature. Figure 4 shows the contributions of changes in income inequality, taxes, and technology
to wealth inequality. For reference, the figure also includes the contribution of the demographic
transition.

To quantify these effects, we simulate a counterfactual scenario in which the relevant parameters
are fixed at their 1955 levels and compare it to the baseline scenario, where those parameters evolve
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as observed historically. In both scenarios, the initial conditions are identical, based on the same
initial steady state at t = 0 (corresponding to the year 1935). The respective paths of mortality
rates in the baseline and counterfactual scenarios are revealed at t = 1 (year 1940).

To start, we analyze the impact of observed trends in income inequality, which reveal three
notable developments between 1950 and 2015. First, the share of college graduates increased, which
can influence income and wealth inequalities in varying ways. It may reduce inequality by narrowing
educational gaps and expanding opportunities, but if the returns to higher education are substantial,
it could instead exacerbate inequality.

Second, the college premium rose, amplifying income and wealth inequalities by widening the
earnings gap between college graduates and non-graduates. However, it may also have bolstered the
wealth of the middle class, potentially offsetting its inequality-enhancing effects.

Figure 4: Impact of different factors evolution on wealth inequality (in Gini points)

-2 -1 0 1 2 3 4

Gini points

2050

2015

1975

[S1]Longevity:1955 [S2]IncomeINEQ:1955

[S3]Taxes:1955 [S4]Technology:1955

Note: The bars depict the differences in the wealth Gini coefficient for a given year between the baseline scenario
and the respective counterfactual scenarios, as defined by the formula ∆t = Gb

t − Gc
t . The positive/negative number

signifies that a given factor contributed to the increase/decrease of the Gini coefficient. Counterfactual scenario
[S1]Longevity:1955 was computed by fixing the mortality rates used to compute both the population structure and in the
consumer problem at the level from 1955, the rest is as in the full model. Counterfactual scenario [S2]IncomeINEQ:1955
was computed by fixing income characteristics at the 1955 levels, see Figures B.1, B.3 and B.5, the rest is as in the
full model. Counterfactual scenario [S3]Taxes:1955 was computed by fixing tax rates at the 1955 levels, see Figure
B.7. Counterfactual scenario [S4]Technology:1955 was computed by fixing the TFP growth rate, depreciation rate, and
labor share at the 1955 levels, see Figure B.6.

Third, income risk increased for both college graduates and individuals without a college educa-
tion. This had opposing effects: greater income dispersion contributed to rising wealth inequality,
while heightened income risk encouraged precautionary savings, particularly among those with fewer
assets, which mitigated wealth inequality. Details on the baseline and counterfactual inputs for these
analysis are provided in Online Appendix B. The overall impact of these three factors on the Gini
wealth coefficient ultimately depends on the quantitative analysis.
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In Figure 4, the counterfactual scenario [S2]IncomeINEQ:1955 demonstrates the impact of these
income changes. This scenario fixes income characteristics at their 1955 levels.12 Our simulations
reveal that income changes are the primary driver of wealth inequality over time. However, rising
longevity has a substantial impact, with their effect being approximately half that of income changes.
By 1975, income changes increase the Gini coefficient by approximately 1.2 points, while rising
longevity accounts for a smaller increase of about 0.9 points. By 2015, income changes contribute
2.9 Gini points, compared to 1.4 points from rising longevity. By 2050, income changes raise the
Gini coefficient by 3.7 points, while demographic factors account for 1.45 points.

These results highlight the critical role of income inequality and rising longevity in shaping wealth
inequality over time. Although income changes exhibit a larger and increasing effect, the impact of
rising longevity remains considerable. We present detailed analysis concerning the contributions of
specific income components to inequality in Online Appendix E.1.

Our results align with findings in the literature that identify income inequality as a primary driver
of wealth inequality, as demonstrated by studies such as Castaneda et al. (2003) and Kindermann
and Krueger (2022). The contribution of our study is its explicit consideration and quantification
of the role for rising longevity in shaping wealth inequality inequality trends. We provide a more
comprehensive view of the underlying drivers of this phenomenon, by showing that changes in life
expectancy and population structure play an important role in explaining wealth inequality over time.

Another key determinant of wealth inequality is taxation.13 Figure 4 presents the counterfactual
scenario [S3]Taxes:1955, which examines the impact of tax changes by holding tax rates constant
at their 1955 levels (see Figure B.7), while all other elements of the model remain unchanged. Our
simulations show that changes in taxation reduce the Gini coefficient by 1 point in 1975. Although
the effect persists beyond this period, it diminishes slightly, contributing to reductions of just under
1 point in 2015 and 0.8 points in 2050.

The impact of demographic factors contrasts with that of taxation, as rising longevity increases
inequality, while taxation reduces it. The quantitative effect of demographic factors is also slightly
larger than that of taxation. Our findings regarding tax changes are also consistent with the existing
literature. For example, Hubmer et al. (2021), who do not account for demographic effects, identify
the decline in tax progressiveness during the late 1970s as a primary driver of rising wealth inequality.
Although our model does not single out tax changes as the key driver of wealth inequality, the
qualitative effects of income tax progressiveness align with their conclusions. As shown in the Online
Appendix E.2, increased labor tax progressiveness contributed to a decline in wealth inequality by
1975. However, the subsequent decline in progressiveness resulted in rising wealth inequality. This
ongoing trend of declining tax progressiveness has historically intensified wealth inequality and is
expected to continue doing so in the future.

Finally, we examine the impact of technological changes. The counterfactual scenario denoted
as [S4]Technology:1955 captures these effects by fixing the TFP growth rate, depreciation rate, and
labor income share at their 1955 levels (for more details, refer to Figure B.6). Our simulations show
that technological changes reduce wealth inequality, lowering the wealth Gini coefficient by 0.9 points
in both 1975 and 2015, and by 1.0 point in 2050. We present a detailed analysis in Online Appendix
E.3.

Although the contribution of rising longevity is smaller than that of income dynamics across all
periods, it remains considerable. In contrast, the effect of tax changes is somewhat less pronounced.

12Income risk (the variance of idiosyncratic productivity shocks) is held at its initial level, based on estimates for
cohorts entering the labor market between 1950 and 1954.

13Here we present the effects of changes in all taxes. Online Appendix E.2 offers details on how different taxes affect
wealth inequality.
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While much of the literature has focused on the roles of income evolution and tax policy in shaping
wealth inequality, the impact of rising longevity has received less attention. Our results show the
important role of demographic factors.

Sensitivity analyses To assess the robustness of our results, we conduct a series of sensitivity
checks, detailed in Online Appendix F. These checks specifically examine whether the contribution
of demographic factors to wealth inequality changes under alternative assumptions.

First, we test the sensitivity of our results to calibration of the inverse elasticity of intertemporal
substitution, θ, which also determines risk aversion (Online Appendix F.1). Second, we introduce
persistent differences in interest rates between college-educated individuals and those with less than
a college education (Online Appendix F.2). Third, we remove discount factor shocks to assess their
influence (Online Appendix F.3). Fourth, we use an alternative formulation of the income process
(Online Appendix F.4). Fifth, we assume a higher projected TFP growth rate for the future (Online
Appendix F.5). Finally, we allow for unequal distribution of bequests (Online Appendix F.6). Rising
longevity consistently contributes to increasing wealth inequality in these experiments, increasing the
wealth Gini coefficient by approximately 1 point in 1975 and by nearly 1.5 points in both 2015 and
2050.

Despite robustness, our results are not without limitations. First, while our model replicates an
important part of wealth inequality dynamics, the rise in wealth inequality in the recent decade is
larger than implied by our model and macroeconomic inputs. This may be related to increasing
financialization, the permeation of demographic factors additionally to rising longevity, etc. Second,
due to the general equilibrium structure, our model ignores the endogeneity of dimensions such as
education and returns to skills. Finally, models with dynasties can help to explain persistently high
and low wealth.

6 Conclusions

The sources of wealth inequality, particularly the post-1970s rise in the U.S., remain a subject of
considerable debate. Much of the applied macroeconomic literature attributes this increase to growing
income inequality and a decline in redistribution within the tax system. This study focuses explicitly
on the role of rising old age longevity, analyzed through the lens of an overlapping generations
general equilibrium model. Although we incorporate the channels identified in previous research, we
also quantify the impact of rising longevity. Our findings indicate that increased longevity contributed
to nearly a 1 Gini point increase in wealth inequality in the U.S. by 1975 and nearly 1.5 Gini points
by 2015. Additionally, using demographic projections, we demonstrate that these mechanisms are
expected to further drive wealth inequality upward in the coming decades.

This substantial role of demographics is primarily attributed to the behavioral channel. As in-
dividuals expect to live longer in old age, they adjust their asset accumulation and decumulation
patterns, significantly affecting both the general equilibrium of this economy and the distribution
of wealth and income. This behavioral effect is stronger than the impact of changes in population
structure.

Our model incorporates carefully calibrated mechanisms discussed in the existing literature, en-
abling counterfactual simulations to evaluate the relative importance of income inequality, tax chan-
nels, and demographics. In the OLG framework, we find that the tax channel plays a relatively minor
role, and its ability to offset the rise in wealth inequality will remain fairly limited. Additionally, we
show that the evolving nature of work, coupled with rising income inequality, will further amplify
wealth inequality in the future, compounding the effects of rising longevity.
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A Online Appendix: the model

In this section we present details of our general equilibrium OLG model with heterogeneous households
that were relegated from the main text to the Online Appendix.

A.1 Social security

Post-retirement (j > j̄), benefits grow at the same rate as the aggregate labor income in the
economy. Thus benefits are given by:

bs,j̄,t = ϱj̄,t · pj̄,t · fs,j̄,twtetℓt and bs,j,t = wtLt

wt−1Lt−1
bs,j−1,t−1 for j > j̄. (A.1)

Drawing rights (average lifetime earnings relative to average earnings in the economy) fs,j,t evolve
according to

fs,j+1,t+1 = 1
j

(
(j − 1) · fs,j,t + min {wtes,j,tℓs,j,t, capt}

wtetℓt

)
, (A.2)

where capt denotes the OASDI cap, expressing earnings relative to average economy earnings over
a lifetime. We compute AIME for the whole working period rather than the 35 highest-earnings,
consistent with 5-year periods and prior literature (Nishiyama and Smetters, 2007; McGrattan and
Prescott, 2017).

The replacement rate pj̄,t is computed according to

pj̄,t = 0.9 · min
{

1, F1,t

fs,j̄,t

}
+ 0.32 · min

{
1 − F1,t

fs,j̄,t

,
F2,t

fs,j̄,t

}
+ 0.15 max ·

(
1 − F2,t

fs,j̄,t

, 0
)

where bend points (F1,t, F2,t) reflect the progressive replacement rates and are expressed as a fraction
of average earnings (McGrattan and Prescott, 2017).

A.2 Production

Our model features a standard Cobb-Douglas production function Yt = Kαt
t (AtLt)1−αt with labor

augmenting technological progress where At+1/At = 1 + γA
t+1. The standard profit maximization

problem of the firm yields the following factor prices

rt = αtK
αt−1
t (AtLt)1−αt − dt and wt = (1 − αt)Kαt

t A1−αt
t L−αt

t , (A.3)

Gross capital return rt + dt is taxed at the rate τk,t so that the after-tax rate of return on capital is

r̃t = (1 − τk,t) (rt + dt) − dt. (A.4)

A.3 Government

The tax revenue Tt is used to finance spending on government purchases Gt and to subsidize the
social security system, St:

Gt + St = Tt, (A.5)

where

Tt =
∑

s∈{L,H}

j̄−1∑
j=1

Ns,j,t

∫
Ω

Tt (ys,j,t (zs,j,t) , ȳt) dPs,j,t + τk,t (rt + dt)Kt + τc,tCt. (A.6)

19



Here Ct denotes aggregate consumption, Ct =
∑

s∈{L,H}
∑J

j=1Ns,j,t
∫

Ω cs,j,t (zs,j,t) dPs,j,t, and Ps,j,t

is the probability measure describing the distribution of agents of education level s and age j in period
t over the state space Ω.

The subsidy to the social security system St is equal to the difference between the total pension
benefit payments and the total contributions:

St =
∑

s∈{L,H}

J∑
j=j̄

Ns,j,t

∫
Ω
bj,t (zs,j,t) dPs,j,t − τss,twtLt. (A.7)

We assume that the model is closed by government expenditure Gt.

A.4 Equilibrium

Given government policies
{
τc,t, τk,t, τℓ,tλt, τss,t,St, ϱj̄,t

}∞

t=0
a competitive equilibrium is a sequence

of: i) value functions
{

(Vs,j,t (zs,j,t))J
j=1

}∞

t=0
for s ∈ {L,H}; ii) policy functions

{
(cs,j,t (zs,j,t) , ℓs,j,t (zs,j,t) , fs,j+1,t+1 (zs,j,t) , as,j+1,t+1 (zs,j,t))J

j=1

}∞

t=0
for s ∈ {L,H}; iii) prices {rt, wt}∞

t=0; iv) aggregate quantities {Lt,Kt, Yt, Ct, Gt, Tt}∞
t=0; and v)

measures of households
{

(Ps,j,t)∞
j=1

}∞

t=0
for s ∈ {L,H} such that:

• firm problem: for each t, prices {rt, wt} satisfy equations (A.3);

• household problem: for each s, j, t value functions Vs,j,t (zs,j,t) and policy functions cs,j,t (zs,j,t) , ℓs,j,t (zs,j,t) , fs,j+1,t+1 (zs,j,t) as,j+1,t+1 (zs,j,t)
solve the problem (2);

• government: the government budget and the pension system constraints are satisfied, i.e.,
equations (A.5) and (A.7) are satisfied;

• markets clear:

labor market: Lt =
∑

s∈{L,H}

j̄−1∑
j=1

Ns,j,t

∫
Ω
es,j,t (zs,j,t) ℓs,j,t (zs,j,t) dPs,j,t

asset market: Kt+1 =
∑

s∈{L,H}

J∑
j=1

Ns,j,t

∫
Ω
as,j+1,t+1 (zs,j,t) dPs,j,t

goods market: Yt = Ct +Kt+1 − (1 − dt)Kt +Gt

• probability measures: measures of households
{

(Ps,j,t)∞
j=1

}∞

t=0
for s ∈ {L,H} are consistent

with exogenous processes for productivity, discount factors and returns, and policy functions.
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B Online Appendix: calibration

In this section we present the details of our baseline calibration, with data sources and intermediary
steps. We also describe how we arrive at counterfactual calibration of the model parameters.

B.1 Demographics

We use population data from Centers for Disease Control and Prevention (CDC). The five-year
averages for births and survival probabilities are provided by the United Nations Population database.
This data covers historical births and survival probabilities as well as provides a demographic forecast
until 2100. We assume that after that year the birth rate continues at the same level, equal to 0.06%
per year. We also assume that survival probabilities stabilize at their 2100 levels.

The share of households with s = H in each birth cohort is set to match the share of individuals
with at least four years of college completed by the age of twenty-five in the U.S. Census and
American Community Survey. This data covers cohorts born in the years 1915-1995. We obtain the
trend component by applying the Hodrick-Prescott filter of the series and then calculate five-year
averages of the trend component. When we extrapolate into the future, we aim for the smoothness
of calibration. We assume that the trend share increases from 35% in 2020 to 40% in 2030 and
then gradually grows to reach 44.5% by 2100.14 The path of the share of households with a college
education in each birth cohort that we use as an input for the model is shown in Figure B.1. The
extrapolated share of college graduates is smooth and continues the observed trend.

Figure B.1: Share of college graduates
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Note: Share of college graduates by the age of 25. from U.S. Census and American Community Survey. The share of
college graduates is adjusted to five-year periods by applying Hodrick-Prescott filter with parameter 6.25 and calculating
five-year averages of the trend component.

In our model, education status affects mortality risk (in line with empirical evidence, see Chetty
et al., 2016). Observational data by Case and Deaton (2021) reveal that mortality for cohorts reaching
the age of 50 between 1935 and 1965 was substantially lower for individuals with a college education
and that gap was widening especially for the most recent of these birth cohorts, as portrayed in
Figure B.2. Note that life expectancy was increasing for all levels of education, but the increase was

14We need to assume a constant terminal level in the far future to calculate the final steady state.
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more pronounced for individuals with a college education. Individuals from birth cohorts that reach
50 after 1965 are also characterized by a large heterogeneity of mortality rates depending on college
education, but here Case and Deaton (2021) rely on demographic projections. They suggest that
the gap will eventually narrow.

Figure B.2: Life expectancy at the age of 50 for college, less than college educated
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Note: The blue line shows life expectancy at the age of 50 from United Nations Population database. The other two
lines show life expectancy at the age 50 for individual with college education and with less than college education. Life
expectancy by education status is calculated using data from Case and Deaton (2021). See Section 3.1 for details.
Data are adjusted to five-year periods by calculating five-year averages.

The survival probabilities in the model, ψs,j,t, depend on the education level. To capture this
heterogeneity, we use U.S. death certificate data from Case and Deaton (2021) which include survival
probabilities by cohort, age, and college attainment in years 1990 to 2018. We calculate ratios of
survival probabilities of college-educated to survival probabilities of those who do not have a college
education. We then use these ratios together with survival probabilities for the entire population and
the data on the share of college-educated households to obtain ψs,j,t. For cohorts born before 1915,
we extrapolate the ratio of survival probabilities for college-educated individuals relative to those
without a college education using the value observed for the 1915 cohort using the first observation
in Case and Deaton (2021), that is the ratio is assumed to be 1.018. Analogously, for cohorts born
after 1990, we extrapolate the using the value observed for the 1990 cohort, that is 1.006. The
extrapolated values of ψs,j,t additionally depend on the projected survival probabilities for the entire
population from the United Nations Population Database and our extrapolation of shares of college
graduates. We show life expectancy at the age of 50 for the subsequent birth cohorts in Figure B.2.

B.2 Income

Recall Equation (3) that describes es,j,t : ln es,j,t = βs,t + ζs,j + ωs,j,t. where βs,t is a time-varying
component common to all households with the same education level s (college premium), ζs,j is a
type-specific deterministic age profile and ωs,j,t follows a first-order Markov chain with states ωs,j,t

and transition matrix πω
s,j,t (ωs,j+1,t+1 | ωs,j,t). In this Appendix we describe how we calibrate each

of the three components of es,j,t.
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B.2.1 College premium

We normalize βL,t = 1 and use the (log) college wage premium series from Goldin and Katz (2008),
extended in Autor et al. (2020) to 1914-2020 to construct our measure of βH,t. We calculate the
trend component using the Hodrick-Prescott filter. Given that the growth of the trend component
slowed down after 2000 and essentially halts around 2015, we assume the college premium will remain
constant after 2020. The level of college wage premium we use in our model is shown in Figure B.3.

Figure B.3: Skill premium
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Note: Skill premium from Autor et al. (2020). Skill premium is adjusted to five-year periods by applying Hodrick-
Prescott filter with parameter 6.25 and calculating five-year averages of the trend component.

B.2.2 Processing PSID data

We use 1970-2019 waves of the Panel Study of Income Dynamics (PSID) to calibrate type-specific
deterministic age profiles ζs,j and idiosyncratic income risk ωs,j,t.

Sample selection Our sample consists of households with heads that satisfy the following condi-
tions:

• Older than 19 and younger than 66.

• Provide non-intermittent responses to the survey.

• Appear at least four consecutive times in the panel (after restricting observations, as explained
below)

Observations in a particular year are dropped if:

• Household (head + spouse) hourly labor income is greater than $250 or smaller than $2 (for
variable definitions see below; all nominal variables are deflated to January 2000).

• Annual growth of household hourly labor income is greater than 500% or the annual fall is
greater than 80%.

• Household total work hours in a year is lower than 260 hours (5 hours per week).
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• Total household labor income is smaller than $1’000 or greater than $1’000’000.

Note that a household can be excluded from a sample in a particular year, but still remain in the
sample in the other years, as long as it satisfies conditions for at least four consecutive years.

We label households who receive a sufficiently large share of income from businesses in a given
period as “superstar”. We divide our sample into non-overlapping 5-year periods. We label a house-
hold as an “superstar” if in a given 5-year period it satisfies two criteria: 1) its household income
over a period has to be above the 25th percentile; 2) the share of 5-year business income in total
income has to exceed 25%. Note that if a household is an “superstar” in some periods, we keep
observations corresponding to this household in periods in which it is not labeled as an “superstar”.

In our baseline specification, we exclude “superstar” when estimating ζs,t nor a first-order auto-
regressive process (4). We use these observations to compute the share of “superstar” in the economy
(as a moment target) and exit rates (as a model parameter).

We study the role of this assumption in Appendix F.4, where we present the alternative calibration
of income processes. Specifically, there we do not distinguish entrepreneurs. Instead, we estimate
the income process ζs,t and a first-order auto-regressive process (4) using all observations jointly.
This specification of the model does not have a “superstar” state in the income process.

Variable definitions

• Age – Individuals are assigned to a particular birth cohort by subtracting their age from the
year of the last survey in which they appeared. The age in each year is thus calculated based
on the cohort (eliminating the possibility that someone had the same age in two consecutive
surveys).

• Total household labor income – Sum of spouse and head wages and salaries, bonuses, overtime
payments, tips, commissions, professional practice or trade, additional job income, miscella-
neous labor income, as well as business income and farm income. Up to 1993 we use two
variables which include all above: (i) assets part of business income for both head and spouse
(V20439 in 1992), (ii) the rest (in 1993 ER71321 for spouse; V23323 for head). From 1994 we
sum the following variables: (i) labor income (in 1994 ER4144 for spouse; ER4140 for head),
(ii) S/H part of labor business income (in 1994 V21806 for spouse; ER4119 for head), (iii) S
and H part of farm income (ER4117 in 1994), (iv) assets part of business income for head or
spouse (in 1993 V21814 for spouse and V21810 for head).

• Total work hours – Sum of spouse and head total annual work hours on all jobs (including
overtime).

• Household hourly labor income - Total household labor income divided by total work hours.

• Education – Based on variable indicating highest grade or year of school completed (ER30052
in 1970) education was transformed into categorical variable taking 3 levels: (i) 0-11 grades;
(ii) High School or 12 grades and non-academic training; (iii) College dropout, BA degree or
higher.

B.2.3 Deterministic age profiles and income risk

Age profile ζs,j estimation We recover deterministic age profiles ζs,j by applying Deaton and
Paxson (2000) decomposition. This method allows for the identification of age effects, controlling
for year and cohort effects, such that: 1) the sum of year effects is normalized to 0, and 2) they are
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orthogonal to a linear time trend. This assumption overcomes the identification problem (cohort is
colinear with age and year) and attributes growth in wages to age and cohort effects, whereas year
effects are responsible for cyclical fluctuations. Thus to obtain ζs,j we estimate a simple regressions
(separately for s = L and s = H)

lnwi,s,j,t =
60∑

j=25
ζ̂s,j · Ages,j +

1986∑
c=1926

αs,c · Cohorts,c +
2019∑

t=1970
γs,t · Years,t + ϵi,s,j,t, (B.1)

where wi,s,j,t is hourly household labor income of household i. Households are assigned to a particular
birth cohort c by subtracting their age from the year of their last available survey. Ages,j ,Cohorts,c

and Years,t are dummies which take value one for observations from year t, age j and cohort c. To
overcome the issue of colinearity between age, cohort and year we create new year dummies (and
use it instead of Years,t in regression):

ds,t = Years,t − [(t− 1970) · Years,1971 − (t− 1971) · Years,1970] .

Although we drop ds,1970 and ds,1971, the values of γs,t for those years can be recovered based on the
assumption of their orthogonality to the time trend and the assumption of ∑2019

t=1970 γs,t = 0. We use
residuals from regression equation (B.1) in the next step and denote them by ω. Figure B.4a shows
the results of estimation. We calculate five-year averages of ζ̂s,j to use as an input in the model.
The results are shown in Figure B.4b.

Figure B.4: Deterministic profile of log productivity across age

(a) Empirical estimates (b) Model inputs

Note: Deterministic profiles of log productivity are calculated using PSID data, with the restrictions described above.
The figure shows the estimates ζ̂s,j from regression equation (B.1), relative to the age of 20 and the level of education
“high school or less”. As inputs for the model, the deterministic profiles of productivity are calculated by taking exp of
5-year averages of the point estimates ζ̂s,j . The figure shows exp(ζs,j), relative to the age of 20-24 and the level of
education “high school or less”.

Income process estimation We use the residuals from regression (B.1) as our measure of id-
iosyncratic productivity. Use ωi,s,c,t to denote the level of idiosyncratic productivity in year t for
individual i of type s, born in year c. We assume

ωi,s,c,t = ϱω,sωi,s,c,t−1 + εω,i,s,c,t, εω,i,s,c,t ∼ N
(
0, σ2

ω,s,c

)
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with ωi,s,c,c = 0. This formulation assumes that i) ϱω,s is common to all individuals of the same
education level s (it does not depend on c nor t); ii) σ2

ω,s,c is common to all individuals of the same
education level s and birth year cohort c (it does not depend on t), iii) all individuals are born with
the same level of idiosyncratic productivity. We have

V ar (ωi,s,c,c) , and V ar (ωi,s,c,t) = ϱ2
ω,sV ar (ωi,s,c,t−1) + σ2

ω,s,c,

and Cov (ωi,s,c,t, ωi,s,c,t+k) = ϱk
ω,sV ar (ωi,s,c,t) .

Define ζs,c,t,k := Cov (ωi,s,c,t, ωi,s,c,t+k). Observe that

ζs,c,t,4 − ζs,c,t,3
ζs,c,t,2 − ζs,c,t,1

=
ϱ4

ω,sV ar (ωi,s,c,t) − ϱ3
ω,sV ar (ωi,s,c,t)

ϱ2
ω,sV ar (ωi,s,c,t) − ϱ1

ω,sV ar (ωi,s,c,t)
=
ϱ4

ω,s − ϱ3
ω,s

ϱ2
ω,s − ϱ1

ω,s

= ϱω,s.

Moreover,
V ar (ωi,s,c,c+1) = σ2

ω,s,c.

These two moments moments pin down
(
ϱω,s, σ

2
ω,s,c

)
. In our estimation we use all available moments

(variances and covariances). We follow Guvenen (2009) and minimize the “distance” between the
elements of the empirical covariance matrix of income residuals ω and its counterpart with the entries
described above. We group households of each education level into 5-year bins by their birth year
and restrict σ2

ω,s,c to be the same for each bin. For example, households in which the head was born
in years 1936, 1937, 1938, 1939 and 1940 have the same σ2

ω,s,c = σ2
ω,s,1936. We calculate empirical

moments using all available observations and use an identity matrix in the estimation.
We present the results of our estimation in Figure B.5.

Figure B.5: Variances of idiosyncratic productivity shocks

Note: Variances of idiosyncratic productivity shocks. Solid lines are point estimates, shaded areas are 95% confidence
intervals (bootstrap with 1000 repetitions).
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Recall that one period in the model corresponds to five years. To map the estimates to the model
inputs ϱ̄ω,s, σ̄

2
ω,s,c we calculate

ϱ̄ω,s = ϱ5
ω,s and σ̄2

ω,s,c = σ2
ω,s,c

1 − ϱ10
ω,s

1 − ϱ2
ω,s

.

We then correct the mean of idiosyncratic income shocks εω,i,s,c,t so that E [expωi,s,c,t] = 1. Finally,
to use the estimates process as an input in the model, we approximate each resulting AR(1) process
with a 5-state Markov chain by the Rouwenhorst method. We assume the Markov chains for cohorts
that entered the labor market before 1955 are the same as for the cohort that entered the labor
market in 1955. Similarly, for cohorts that entered the labor market after 2005 we use the estimates
for the cohort that entered the labor market in 2005.

Extra income state We add an extra income state to capture business income. This state can be
reached only from the 5th state and upon exiting it the household moves to the state corresponding to
the average productivity (3rd state for its education level). We assume that the transition probabilities
from and to this extra state are the same for each education level s.

We use households labeled as “superstars” in the PSID data to pin down these two transition
probabilities. In each 5-year period, we calculate the share of “superstars” in the population. The
average share is 5.3% in our 1970-2020 sample. We also calculate the exit rate, the fraction of
“superstars" that transition out of being “superstars" in the next 5-year period. The average exit
rate is approximately 2%.

We assume that idiosyncratic productivity corresponding to this state is a multiple of the level
of productivity associated with the 5th state, the same number for all s, j, t. PSID reports unin-
corporated business income for husband and wife, but the aggregate share of this income in total
household labor income for households aged 25-65 amounts to roughly 13%, whereas it is 21% in
the NIPA. Instead of relying on self-reported business incomes in PSID to calibrate the multiple by
matching the average share of household business income in total disposable income from BEA in
the years 1950-2020, equal to 21%.

B.3 Idiosyncratic return risk

To calculate the standard deviation of return shocks, we take data on share of wealth held by a
particular wealth percentile group from Distributional Financial Accounts (DFAs) provided by the
Federal Reserve Board. The DFAs use the Financial Accounts of the United States and the Survey
of Consumer Finances (SCF). The DFAs track the evolution of share of U.S. household wealth held
by five percentile groups of wealth: the top 0.1 percent, the remaining 0.9 percent of the top 1,
the next 9 percent (i.e., 90th to 99th percentile), the next 40 percent (50th to 90th percentile),
and the bottom half (below the 50th percentile). We combine together shares held by the top 0.1%
and the next 0.9%. We average shares held by the resulting four percentile groups over the period
1989-2022: ϖgroup ∈ {ϖ0−50, ϖ50−90, ϖ90−99, ϖ99−100}.

The wealth percentiles analyzed in Hubmer et al. (2021) (HKS) differ from those in the DFAs.
We use the following mapping:

1. For bottom 50% (DFAs) we assume standard deviation of 0.023 (corresponding to P0-P40 in
HKS);

2. For 50-90% (DFAs) we assume standard deviation of SD of 0.081 (corresponding to P50-P60
in HKS);
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3. For 90-99% (DFAs) we assume standard deviation of SD of 0.094 (corresponding to P90-P95
in HKS);

4. For 99-100% (DFAs) we assume standard deviation of SD of 0.119 (corresponding to P99-P99.5
in HKS).

We then calculate the variance of annual excess returns as

ϖ2
0−50 · σ2

r,0−50 +ϖ2
50−90 · σ2

r,50−9 +ϖ2
90−99 · σ2

r,90−99 +ϖ2
99−100 · σ2

r,99-100.

One period in the model corresponds to five years. For simplicity, we approximate the variance
of five-year returns as 5 times the variance of annual returns. This approximation is exact if the
deterministic part of returns is equal to zero.

B.4 Production function

We use Penn World Tables 10, published by the Groningen Growth and Development Center (GGDC),
to calibrate all the time-varying parameters of the production function. Below we describe the details
of processing the GGDC data as well as extrapolation. We remove the cyclical component by applying
the Hodrick-Prescott filter. The values for each period are obtained as five-year averages of the trend
component.

Depreciation rates dt (Figure B.6a, variable delta) We take annual depreciation rates and ag-
gregate them to five-year rates.15 The trend component of depreciation grows from roughly 15%
over a five-year period to roughly 21%. Since the trend component did not exhibit much change in
the 1960s, we assume a constant level in the years 1935-1955, equal to the trend component of the
depreciation rate in 1955.

Output elasticities with respect to labor 1 − αt (Figure B.6b, variable labsh). Labor share in
our model is equal to 1 − αt matched directly labor share in the U.S. in 1950-2019. We assume the
trend component of the labor share declined linearly between 1935 and 1950 (there is no data for
these years in PWT 10). We assume that labor share declines from 59.7% in 2020 to 57% in 2100,
with the rate of decline gradually slowing down, as portrayed in Figure B.6b.

Labor-augmenting technological progress γA
t+1 (Figure B.6c, variable rtfpna) We take raw

TFP growth estimates from PWT 10 to calculate the TFP level (normalizing TFP in 1935 to one).
Next, we adjust it using αt to make it labor-augmenting. We then divide the resulting measure of
labor-augmenting productivity by a time-varying factor that represents productivity changes resulting
from changing age and education composition, and changing skill premium. This procedure yields
a path of At that starts in the 1950s and ends in 2017 which we use in all demographic scenarios
considered in this paper. For the years between 1930 and 1950 we assume flat TFP growth rate. For
the years after 2020 we take the estimates of 0.6% per annum, consistent with Fernald (2016) who
projects future annual overall TFP growth rates between 0.4% and 0.8%.

15The source of variation in depreciation rates is the changing composition of the U.S. capital stock: GDDC does
not adjust depreciation rates over time for the same type of capital input, but it computes capital input shares, which
serves to provide a weighted average depreciation rate for the U.S. economy.
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Figure B.6: Technology
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Note: Data are taken from Penn World Tables 10. Depreciation rate is variable delta, labor share is variable labsh, TFP
growth rate is variable rtfpna. The data was adjusted to five-year periods. We also remove the cyclical component by
applying Hodrick-Prescott filter. The values for each period are obtained as five-year averages of the trend component.

B.5 Taxes

Average tax rates on labor income τℓ,t, capital income τk,t, and consumption τc,t (Figures
B.7a, B.7b, B.7c). Tax rates constitute inputs into model directly, in other words, there is no
smoothing of tax rates. Extrapolation takes the last data point and assumes the taxes constant into
the future. As described in the A.3, we close the model with government expenses.

We use series from McDaniel (2007) to calibrate the average labor income tax rate τℓ,t, the gross
capital income tax rate τk,t, and the consumption tax rate τc,t. These rates match the shares of
revenues from capital income tax, labor income tax, and consumption tax observed in the data. We
calculate the five-year averages of the series to use as inputs for our model. In the early periods, for
which we do not have data, we assume the tax rates are equal to their first available value of the
five-year average. We assume that tax rates in the future are equal to their last observed value of
the five-year average.

Labor income tax progressivity λt (Figure B.7d). To obtain λt, the parameter governing the
extent of labor income tax progressivity, we follow Ferrere and Navarro (2018). They calculate
λt = (AMTRt −ATRt) / (1 −ATRt), where AMTRr is the average marginal tax rate and ATRt

29



Figure B.7: Tax rates
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(d) Labor income tax progressivity, λ

Note: labor income tax average rate, gross capital income tax rate, and consumption tax rate are from McDaniel
(2007). Labor income tax progressivity, λ, is calculated by using measures of average marginal tax rates from Barro
and Sahasakul (1983) and Mertens and Montiel Olea (2018) and total market income from Piketty and Saez (2003).
See the main text.

is the average tax rate. We use measures of AMTRt from Barro and Sahasakul (1983) for 1916-1946
and from Mertens and Montiel Olea (2018) since 1946. Average tax rates are calculated as the sum
of federal personal current taxes divided by the total market income from Piketty and Saez (2003).
We calculate the five-year averages of the resulting series to use as input for our model.

B.6 Social security contributions

To set the effective rate of social security contribution τss,t we use data on social security contributions
relative to GDP from the OECD and calculate the five-year averages. See Figure B.8 for the path
that we use as an input. We assume the ratio is constant after 2015, consistent with its relative
stability since the 1990s. We assume the ratio was low in the 1940s and that this ratio gradually
increased in the 1950s and the 1960s.

The parameters used to calculate pensions in the social security system, including the OASDI
cap and the bend-points for AIME (F1,t, F2,t) are taken from McGrattan and Prescott (2017) and
remain constant over time.

We use the parameter ϱj̄,t to adjust the generosity of pension benefits (see Section A.1). In
the early period of our model, social security coverage was not universal (the 1935 Act provided
compulsory coverage for workers in commerce and industry only, by 1956 the coverage was extended
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Figure B.8: Social security contributions to GDP
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Note: Social security contributions to GDP series is from OECD. Social security contributions are calculated as the
sum of contributions, voluntary contributions, and imputed contributions. Data are adjusted to adjusted to five-year
periods by calculating five-year averages.

to approximately 90% workers). In addition, there were very few retirees given the recent adoption
of social security. Over subsequent years, coverage increased, and data became informative of the
actual share of beneficiaries in society. We manipulate ϱj̄,t to capture these patterns and calibrate
its value so that the ratio of benefits to GDP in our model aligns closely with the data (see Figure
D.3). Figure B.9 portrays the time evolution of ϱj̄,t. We use the same path in all our experiments.

We do not explicitly introduce Medicare in our framework. In our model, Medicare is included
as a part of government purchases (once it is introduced) financed by tax revenue consistent with
the data. In other words, Medicare is included on the macroeconomic level. In addition, our model
does not feature health shocks. This has important consequences. On the one hand, there are no
precautionary savings to insure against the health shocks in the behavior of the agents in our model.
On the other hand, introducing explicit Medicare transfers and assigning them to individuals would
not introduce any interesting patterns in saving behavior.

Introducing health shocks and Medicare could further amplify the effect of rising longevity on
wealth inequality. In our model, the agents save for old-age consumption, and the longer they expect
to live in retirement, the higher the optimal accumulated stock of savings. If rising longevity after
retirement was associated with an increased risk of adverse health shocks, the old-age saving motive
would be stronger than in a model without health shocks. Medicare operates as an insurance mech-
anism (similar to pensions), but empirical research as well as applied macroeconomic models show
that the insurance is incomplete and agents save (or dis-save slower) in the old age in anticipation
of out of pocket medical expenses.
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Figure B.9: Replacement rate scale parameter ϱj̄,t
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Note: The replacement rate scale parameter is calibrated to match the ratio of pension benefits to GDP. We restrict
the values of this parameter to be nondecreasing over time.

C Online Appendix: population structure

Figure C.1 shows comparison of population structure in selected years in the baseline calibration and
in the counterfactual scenario with longevity fixed at the 1955 levels.

Figure C.1: Population structure: a comparison for four periods
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Note: data from Centers for Disease Control and Prevention (CDC).
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D Online Appendix: model vs data

Virtually almost all macroeconomic parameters in the model are derived from empirical data. The
model includes four key endogenous variables: (1) the rate of return, rt; (2) average hours worked
per capita; (3) the expenditure on social security benefits as a share of GDP; and (4) the ratio of
bequests to GDP.

We begin by comparing the rate of return rt in the model to data from PWT 10, shown in Figure
D.1. The model is calibrated to match the initial interest rate value for the 1950s, after which its
behavior is fully endogenous. The model successfully replicates the overall trend and captures some
degree of fluctuations over time. The discrepancy between the model and the data in recent years
could stem from the absence of government debt in the model. In the data, government debt has
increased significantly in recent years, which likely mitigated the decline in interest rates observed
in the real economy. In our model, government expenses serve as the fiscal closure mechanism, but
public debt is excluded to avoid introducing ad hoc assumptions in counterfactual scenarios. As a
result, the increased savings in the model generate a stronger "saving glut" mechanism compared to
the data, leading to a slightly steeper decline in the interest rate.

Figure D.1: The real interest rate, model vs data
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Note: The thick gray line represents data from Penn World Tables 10 (variable irr), adjusted to five-year periods by
applying a Hodrick-Prescott filter with a parameter of 6.25 and calculating five-year averages of the trend component,
then converted to an annual rate of return. The solid black line represents the annual rate of return rt from our baseline
simulation.

Next, Figure D.2 compares average annual hours in the model to the data. Following Boppart
and Krusell (2020), we calculate average hours in the data by multiplying average hours worked per
engaged person by the number of engaged persons (from Penn World Tables 10) and dividing by the
population aged 20–64 (from the OECD). Both the data and model values are normalized to their
means for comparability.

The model accurately captures the lack of a long-term trend in average hours in the postwar U.S.,
consistent with Boppart and Krusell (2020). However, the model generates slightly larger fluctuations
than observed. The largest discrepancy occurs after 2010, as the model does not replicate the decline
in hours associated with the Great Recession.
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Figure D.2: Average annual hours per capita aged 20–64, model vs data
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Note: The thick gray line represents the data, first adjusted to five-year periods by applying Hodrick-Prescott filter
with parameter 6.25 and calculating five-year averages of the trend component), and then normalized by dividing by
the 1950-2015 average of the trend component. To obtain average annual hours per capita aged 20-64 in the data we
follow Boppart and Krusell (2020). We multiply the average annual hours worked by person engaged (variable avh) by
the number of persons engaged (variable emp) from Penn World Tables 10 and divide by population aged 20-64 from
the OECD. The solid black line represents the rate of average hours worked in the model, normalized by the 1950-2015
average.

For social security, we calibrate the model using the ratio of social security contributions to GDP.
Since our steady state is calibrated to 1935, when social security coverage was limited, we introduce
an additional parameter, ϱj̄,t (see Section A.1), to capture the expansion of coverage over time.16

The path of ϱj̄,t is shown in Figure B.9 in Online Appendix B.6. Figure D.3 shows that the model
replicates both the levels and time variation of social security expenditures well. Furthermore, the
model’s future projections align closely with those of the Congressional Budget Office.

16Note that ϱj̄,t alone does not determine the share of social security expenditures in GDP; this share is endogenously
determined in the model equilibrium.
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Figure D.3: Share of expenditure on social security benefits in GDP, model vs data
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Note: The solid gray line represents data from the Congressional Budget Office (SS.PGDP variable), with the forecast
as of 2015 shown by the gray dashed line. To smooth the series, we apply the Hodrick-Prescott filter and calculate
five-year averages of the trend component. The solid black line shows the model’s baseline scenario for years prior to
2015, while the dashed black line represents the model’s projections for years after 2015.

Finally, we compare the ratio of bequests to GDP in the model with data. In our model, bequests
are purely accidental, determined by mortality and wealth holdings, with no extra parameters to
influence them. Hendricks (2001) estimate aggregate inheritances at 1.2–2% of GNP, while Alvaredo
et al. (2017) report a slight decline in annual inheritance flows from 8% of GDP in the 1950s to 7%
after 2000 (see their Figure A3). In comparison, our model predicts bequest flows of 5.5% in the
1950s and 5.2% after 2000, aligning closely with the 5% target used by Straub (2019).

We also compare our model to insights from microeconomic data, focusing first on the reliability
of the income process. In Figure D.4, we present Lorenz curves generated by the model and compare
them to their empirical counterparts. Each model period represents five years, and two consecutive
periods of model-generated data are combined to approximate the decades of the 1970s, 1980s, 1990s,
2000s, and 2010s. For the empirical counterparts, we use PSID data, combining all observations
within each decade to increase sample sizes.

To ensure consistency with the model, we restrict the data sample to individuals aged 20–65
and exclude observations with negative reported incomes, as such cases are ruled out by our income
process. As shown in Figure D.4, the model replicates the income distribution in the data quite well.
While income shocks and life-cycle patterns were estimated from the PSID, other features of the
income process, such as the college premium and college shares, were sourced from external datasets.
Thus, the model’s ability to match the income distributions in the data, despite this not being a
direct calibration target, is particularly reassuring.

Finally, we compare the role of demographics in the Survey of Consumer Finances (SCF) data
to the magnitudes implied by our model.17 Bauluz and Meyer (2024) utilize the same data to study
saving rates, measured as the ratio of assets to income, across birth cohorts as they age. Their
findings indicate that successive birth cohorts tend to exhibit higher saving rates, which aligns well
with the insights generated by our model.

To further evaluate the match between our model and the data, we decompose a measure of
wealth inequality into between-cohort and within-cohort components. While the Gini coefficient does
not allow for such a decomposition, the Generalized Entropy (GE) index does. GE measures take the

17We use the extended sample provided by Kuhn et al. (2020a).
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Figure D.4: Lorenz curves of income distribution: data vs. model

Note: Labor income data are sourced from the PSID, with population weights applied to the PSID data. In the model,
probability mass serves as weights. Both datasets are restricted to individuals aged 20–65 to align with the model. For
clarity, "superstars" are excluded from both the model and the data.
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following form:

GE(ι) = GEb(ι) +GEw(ι)

GEbetween(ι) = 1
(ι2 − ι)

 J∑
j=1

nj ·
(
aj

a

)ι

− 1


GEwithin(ι) =

J∑
j=1

GEj(ι) · nj ·
(
aj

a

)ι

,

where j = 1, ..., J denotes birth cohorts, ι ̸∈ {0, 1}18 is a parameter that governs the sensitivity
of GE measure, a denotes assets (with a representing average assets in the economy and aj repre-
senting average assets of birth cohort j), and nj denotes the share of birth cohort j. By design,
the GE measure allows for decomposition ∆GE(ι) = ∆GEb(ι) + ∆GEw(ι), where the change in
overall inequality is the sum of changes in between-cohort ∆GEb(ι) and nd within-cohort ∆GEw(ι)
inequality.

Not only is the GE index decomposable, but Lewandowski et al. (2024) also demonstrate that for
ι = 0.5, the GE index closely replicates the dynamics of the Gini coefficient. Importantly, the main
conclusions regarding the decomposition into between- and within-cohort inequality remain robust
to the choice of this parameter.

We decompose changes in wealth inequality in both the model and the data into two components:
the between-cohort component (∆GEb) and the within-cohort component (∆GEw). The results are
presented in Figure D.5, where we display side-by-side bars for a given period, comparing the data
and the model. Gray bars represent the data, while purple bars represent the model, with darker
shades indicating the between-cohort contribution and lighter shades indicating the within-cohort
contribution.

Although these patterns were not explicitly targeted in the calibration, our model accurately
captures the evolving nature of the between- and within-cohort contributions to changes in wealth
inequality. While the magnitudes observed in the data are larger than those in the model, the patterns
generated by the model align remarkably well with the empirical regularities.

18The GE index for ι = 0 simplifies to the mean-log deviation, and for ι = 1, it becomes a Theil index.
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Figure D.5: The contribution of between-cohort inequality and within-cohort inequality to change in
overall inequality
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Note: We obtain household wealth data, measured as net assets, from the Survey of Consumer Finances (SCF)
extended sample (Kuhn et al., 2020a). Observations with negative assets were excluded from the SCF sample, as
the model imposes a non-negativity constraint on asset accumulation. Population weights were applied to the SCF
data, while probability mass served as weights in the model data. Both datasets were censored at the 99th percentile
for consistency. To measure wealth inequality, we use the Generalized Entropy (GE) index with ι = 0.5, as it closely
replicates the time variation observed in the Gini coefficient of wealth inequality.

Our decomposition of changes in wealth inequality into between- and within-cohort components
does not directly correspond to the endogenous processes in the model. It is important to note that
rising longevity can influence both components. The between-cohort component reflects the fact that
birth cohorts with differing life expectancies after retirement accumulate varying levels of wealth by
the time they retire. Meanwhile, the within-cohort component captures the extent to which agents
within the same cohort respond similarly to the old-age saving motive driven by increased longevity.

Additionally, the dynamics of rising longevity involve the exit of older cohorts and the entry of
new ones, a mechanism similar to the entries and exits in top wealth shares modeled by Gomez
(2023). A comprehensive account of demographic processes in the data is provided by Lewandowski
et al. (2024).
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E Online Appendix: results

In the main text, we focus on the impact of demographic factors on wealth inequality, as this
represents our main contribution to the literature, and we examine in detail how they influence its
evolution. For comparison, we also analyze the total effects of other factors, such as incomes, taxes,
and technology. However, due to space limitations, we could not provide a more in-depth analysis of
these factors in the main text. Instead, we offer a more detailed examination of them here.

E.1 Incomes and evolution of wealth inequality

Between 1950 and 2015, incomes underwent significant changes, characterized by three key develop-
ments. First, the share of college graduates increased, shown in Figure B.1. This shift can influence
income and wealth inequality in either direction: it can reduce inequality by narrowing the gap in
educational attainment and increasing opportunities, or it can exacerbate inequality, especially, if the
benefits of higher education are large.

Second, the college premium rose (see Figure B.3), which likely amplified income and wealth
inequalities by increasing the earnings gap between college graduates and those without a college
education. However, it may also have contributed to boosting the wealth of the middle class,
potentially reducing wealth inequality.

Third, income risk increased for both college graduates and individuals with less than a college
education as shown in Figure B.5. This had two opposing effects: on the one hand, greater income
dispersion led to more dispersed wealth, increasing wealth inequality; on the other hand, heightened
income risk incentivized individuals to save more due to precautionary motives, particularly among
those with fewer assets, which helped reduce wealth inequality.

The net effect of these three factors on the wealth Gini coefficient is ultimately a quantitative
question. Figure D.4 illustrates how income inequality evolved over time in both our model and the
data. Our model effectively replicates the observed increase in the income Gini coefficient.

To quantify the effect of income changes on wealth inequality, we conduct a counterfactual
scenario in which the college premium and the share of college graduates are fixed at their 1955
levels, while income risk is held constant at its initial level. Figure E.1, constructed in a similar
fashion as Figure 3, illustrates the contribution of income changes to the evolution of the Gini
coefficient between 1950 and the years 1975, 2015, and 2050.

Our findings show that income changes have significantly contributed to the increase in the
wealth Gini coefficient. By 1975, the coefficient was 1.2 Gini points higher due to income changes.
This upward trend persisted, with the Gini coefficient rising by 2.9 points by 2015. By 2050, income
changes are projected to account for an increase of 3.7 Gini points.
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Figure E.1: Impact of evolution of income determinants on wealth inequality (in Gini points)

Note: The bars depict the differences in the wealth Gini coefficient for a given year between the baseline scenario
and the respective counterfactual scenarios ∆t = Gb

t − Gc
t . A positive number indicates that a given factor con-

tributed to the increase in the Gini coefficient, while a negative value indicates a decrease. Counterfactual scenario
[S2]IncomeINEQ:1955 was computed by fixing income characteristics at their 1955 levels (see Figures B.1, B.3 and
B.5), while keeping all other aspects as in the full model. Counterfactual scenario [S2a]CollegeShare:1955 was com-
puted by fixing the college share in the population to its 1955 level (see Figure B.1), while keeping the rest as in
the full model. Counterfactual scenario [S2b]CollegePremium:1955 was computed by fixing the college premium to
its 1955 level (see Figure B.3), with all other factors remaining consistent with the full model. The counterfactual
scenario [S2c]Shocks:Initial is computed by fixing the parameters of the stochastic process governing the idiosyncratic
component of income at their initial levels (corresponding to the cohort entering the labor market in 1955, see Figure
B.5 in section B.2), while keeping all other elements consistent with the full model.

Next, Figure E.1 illustrates how the three aforementioned factors contribute to these develop-
ments.

1. Scenario [S2a]: The increase in the share of college graduates reduces wealth inequality by 0.2
Gini points in 1975 but leads to increases of 0.4 and 0.9 points in 2015 and 2050, respectively.

2. Scenario [S2b]: The rise in the college premium slightly reduces wealth inequality by less than
0.1 Gini points in 1975 but subsequently increases it by 0.5 and 0.8 Gini points in 2015 and
2050, respectively.

3. Scenario [S2c]: The increase in idiosyncratic income risk contributes to a rise in the wealth
Gini coefficient by approximately 1.6 Gini points across all analyzed years.
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E.2 Taxes and wealth inequality

The contribution of taxation changes to inequality is a highly debated topic. Here, we present the
predictions of our model. Over the analyzed period, several changes to taxation policies occurred,
as shown in Figure B.7.

First, the average income tax rate increased, which is expected to reduce both income and wealth
inequality. An increase in the progressive average income tax rate lowers the post-tax income Gini
coefficient, which affects the wealth Gini in two ways. On one hand, individuals with higher incomes
tend to save proportionally more, so higher taxes reduce wealth inequality. On the other hand,
reduced income risk decreases precautionary savings, particularly for lower-income households, which
can increase wealth inequality.

Second, the consumption tax rate rose before 1975 and then declined, which can affect wealth
Gini in any directions.

Third, the tax on capital income decreased, which, by encouraging savings, could theoretically
either increase or decrease the wealth Gini coefficient.

Finally, the progressiveness of labor income taxation evolved over the analyzed period. While it is
currently less progressive than in the 1950s, it increased prior to 1975 and declined afterward. Labor
income progressivity has two opposing effects: it reduces income risk, leading to lower precautionary
savings (with stronger responses from households with fewer assets) and increasing wealth inequality,
but it also makes post-tax incomes more equal, which can reduce disparities in asset holdings.

Our findings indicate that tax changes have contributed to a decrease in the wealth Gini coeffi-
cient, as shown in scenario [S3]Taxes:1955 in Figure E.2, constructed in a similar fashion as Figure
3. By 1975, the coefficient was 1 Gini point lower due to these changes. This downward trend
continued, with the Gini coefficient reduced by 1 Gini point by 2015. By 2050, tax changes are
projected to result in a decrease of 0.8 Gini points.
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Figure E.2: Impact of tax changes to the wealth inequality (in Gini points)

Note: The bars depict the differences in the wealth Gini coefficient for a given year between the baseline scenario and
the respective counterfactual scenarios, as defined by the formula ∆t = Gb

t −Gc
t . A positive value indicates that a given

factor contributed to an increase in the Gini coefficient, while a negative value indicates a decrease. Counterfactual
scenario [S3]Taxes:1955 was computed by fixing all tax rates to their 1955 levels (see Figure B.7), while keeping all
other aspects as in the full model. Counterfactual scenario [S3a]τL:1955 was computed by fixing only the average
labor income tax rate (τℓ) to its 1955 level, while the rest of the model remained unchanged. Counterfactual scenario
[S3b]τC :1955 was computed by fixing only the consumption tax rate τc to its 1955 level, with all other elements
of the model unchanged. Counterfactual scenario [S3c]τK :1955 was computed by fixing only the capital income tax
rate (τK) to its 1955 level, leaving the rest of the model consistent with the full model. Counterfactual scenario
[S3d]Progression:1955 was computed by fixing the degree of progressiveness in the labor tax (λ) to its 1955 level, while
all other aspects remained as in the full model.

Next, Figure E.2 illustrates how the four mentioned above factors contribute to these develop-
ments.

1. Scenario [S3a]τL:1955: The increase in the average labor income tax rate reduces wealth
inequality by 0.2 Gini points in 1975 and continues to have a mitigating effect over time. By
2015 and 2050, the Gini coefficient is lower by 0.2 and 0.1 Gini points, respectively.

2. Scenario [S3b]τC :1955: The increase in consumption tax contributed to a slight reduction in
wealth inequality, decreasing the Gini coefficient by 0.01, 0.3 and 0.2 Gini points in 1975, 2015,
and 2050, respectively.

3. Scenario [S3c]τK :1955: The decline in tax on capital income reduces wealth inequality, lowering
the Gini coefficient by 0.7, 0.8, and 0.8 Gini points in 1975, 2015, and 2050, respectively.

4. Scenario [S3d]Progressivity:1955: The initial increase in labor tax progressivity lowers the
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Gini coefficient by 0.1 Gini points in 1975. However, as labor taxes become less progressive,
aftwerward, wealth inequality rises, with the Gini coefficient increasing by 0.3 Gini points by
2015 and projected to rise by 0.4 Gini points by 2050.

E.3 Technology and wealth inequality

Between 1950 and 2015, parameters describing technology underwent significant changes, charac-
terized by three key developments, see Figure B.6. First, the labor share declined. Although usually
one expects that a decline in the labor share exacerbates wealth inequality, under specific conditions
- such as broad distribution of capital income, effective redistributive policies, or increased access to
capital for lower-income groups - it could result in a reduction in inequality.

Second, TFP growth slowed down. Lower TFP growth results in lower interest rates, which
generally tends to reduce wealth inequality, although, theoretically, it could also increase it under
certain conditions. Additionally, slower TFP growth affects the growth rate of average labor incomes
over the life cycle. This can encourage younger individuals to save more, as saving for old age becomes
a greater priority. This effect is likely to be more pronounced among low-income individuals. Overall,
one would expect that a productivity slowdown reduces wealth inequality, although the possibility of
the opposite effect cannot be entirely ruled out. Ultimately, the impact is a quantitative question.

Third, the increase in the depreciation rate lowers the interest rate which can affect wealth
inequality through several interconnected mechanisms. On the one hand, wealthy individuals may
see a slowdown in accumulation of their wealth. On the other hand, low rates of return may
discourage savings among individuals with little assets. The overall impact depends on the specific
features of the model, such as how savings, investment, and income are distributed across agents,
as well as the relative importance of capital and labor income.

Our findings indicate that technological changes have contributed to a decrease in the wealth
Gini coefficient, as shown in scenario [S4]Technology:1955 in Figure E.3, constructed in a similar
fashion as Figure 3. By 1975, the coefficient was 0.9 Gini points lower due to these changes. This
downward trend persisted, with the Gini coefficient lowered by 0.9 Gini point by 2015. By 2050,
technological changes are projected to result in a decrease of 1 Gini point.

Next, Figure E.3 illustrates also how the three mentioned above factors contribute to these
developments.

1. Scenario [S4a]LabShare:1955: It examines the decline in the labor share, which decreases
wealth inequality by 0.9 Gini points in 1975 and continues to have mitigating effect over time.
By 2015 and 2050, the Gini coefficient is reduced by 0.9 and 1.0 Gini points, respectively.

2. Scenario [S4b]TFP:1955: It consider slowdown in TFP growth, which mitigates wealth inequal-
ity. In 1975, it reduces the Gini coefficienty by 0.5 Gini points. This persist, with the Gini
coefficient reductions of 0.9 and 0.5 Gini points in 2015 and 2050, respectively.

3. Scenario [S4c]Depr:1955: It assesses the impact of the decline in deprecation, which increases
wealth inequality. Due to this factor, the Gini coefficient is higher by 0.1, 0.7, and 0.9 Gini
points in 1975, 2015, and 2050, respectively.
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Figure E.3: Impact of technological changes on wealth inequality

Note: The bars depict the differences in the wealth Gini coefficient for a given year between the baseline scenario
and the respective counterfactual scenarios, as defined by the formula ∆t = Gb

t − Gc
t . A positive value indicates

that a given factor contributed to an increase in the Gini coefficient, while a negative value indicates a decrease.
Counterfactual scenario [S4]Technology:1955 was computed by fixing the labor share, the growth rate of technology,
and the depreciation rate to their 1955 levels (see Figure B.6), while keeping all other aspects as in the full model.
Counterfactual scenario [S4a]LabShare:1955 was computed by fixing only the labor share (αt) to its 1955 level, while
the rest of the model remaining unchanged. Counterfactual scenario [S4b]TFP:1955 was computed by fixing only the
TFP growth rate (γA

t ) to its 1955 level, with all other elements of the model left unchanged. Counterfactual scenario
[S4c]Depr:1955 was computed by fixing only the depreciation rate dt to its 1955 level, leaving the rest of the model
consistent with the full model.
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F Online Appendix: sensitivity analyses

To assess the robustness of our findings, we conduct a series of tests focusing on our central result:
the role of rising longevity in shaping wealth inequality. These tests explore whether the contribution
of demographic factors is sensitive to alternative assumptions. We refer to the simulations presented
in the main text as “primary”, which include the baseline model and counterfactual scenarios. In this
section, we add “alternative” simulations, where we modify aspects of the model and/or calibration.
In these alternative simulations, we compare scenarios with longevity evolving according to the data
(labeled “baseline” in figures and descriptions) to counterfactual scenarios where mortality rates are
fixed at 1955 levels (referred to as ‘[S1]Longevity fixed at 1955’).

Specifically, we explore several modifications to the model. First, we examine how variations in
θ, the inverse elasticity of intertemporal substitution, impact our results. Second, we incorporated
persistent differences in interest rates between individuals with a college education and those with
less than a college education. Third, we excluded discount factor shocks to assess their relevance.
Fourth, we applied an alternative specification for the income process. Fifth, we assume a higher path
of technology growth. Finally, instead of assuming that bequests are distributed equally between all
surviving agents in a cohort, we allow for an unequal distribution.

F.1 An alternative calibration: intertemporal elasticity of substitution

The value of θ in our baseline model reflects relatively low risk aversion and an intertemporal elasticity
of substitution at the upper end of the estimates from microeconomic studies. Given the evolving
nature of uncertainty over the analyzed period—particularly with rising income uncertainty—this
parameter plays a significant role and could influence our comparison of demographic factors with
the effects of income inequality on wealth inequality.

To address this concern, we modify the inverse elasticity of intertemporal substitution, θ, from
1.5 to 3. This parameter also governs relative risk aversion. To assess the robustness of our results,
we analyze the contribution of demographic factors in the alternative scenario with θ = 3, as shown
in Figure F.1, and compare it with our primary scenario, shown in Figure 2, where θ = 1.5.

The contribution of rising longevity to wealth inequality changes only slightly between the two
scenarios. In 1975, it is 0.79 Gini points in the alternative scenario compared to 0.9 in the primary
scenario. Similarly, in 2015, the contributions are nearly identical, with 1.41 Gini points in the
alternative scenario and 1.4 in the primary. The difference becomes somewhat larger by 2050, where
the contribution is 1.58 Gini points in the alternative scenario versus 1.45 in the primary.
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Figure F.1: Baseline vs counterfactual scenario of constant longevity (θ = 3)

Note: The black line shows the level of the wealth Gini coefficient in the baseline model with θ = 3. The violet line
illustrates the wealth Gini coefficient from a counterfactual simulation where mortality rates, used both in calculating
the population structure and in the consumer problem, are held constant at their 1955 levels, while all other aspects
align with the baseline simulation.

With a higher value of relative risk aversion, the precautionary motive for saving strengthens,
leading all agents to hold larger amounts of assets. As a result, the overall level of the Gini coefficient
is lower and remains more stable over time compared to the primary calibration. Nevertheless, the
role of longevity in shaping wealth inequality remains consistent with the results from the primary
calibration.

F.2 Introducing heterogeneous rates of return

A large body of literature demonstrates that persistently heterogeneous asset returns are important
contributors to wealth inequality (as discussed in the literature review in the Introduction section).
Therefore, we conduct a robustness check incorporating heterogeneous rates of return based on
education level s. Specifically, we assume that a gross after-tax return is 1 + r̃s,t + ϵrs,j,t, where
r̃s,t = rt + xs. The difference in the deterministic parts of returns between the two education levels
is a constant xH − xL and we normalize xL = 0. The endogenous variable rt is such that the
after-tax net capital income in the economy equals the net return on savings.

r̃t+1Kt+1 =
∑

s∈{L,H}

J∑
j=1

Ns,j,t

∫
Ω
r̃s,t+1as,j+1,t+1 (zs,j,t) dPs,j,t.

To calibrate this version of the model, we calculate the average value of xH using SCF data
from Kuhn et al. (2020b). The SCF dataset provides information on portfolio composition (three
asset classes: equity and business wealth, real estate, and safe financial assets) at the household
level. Following Bach et al. (2020), we use gross expected rates of return for these asset classes
to calculate the expected rates of return on portfolios: the value-weighted CRSP index for equity,
the Case-Shiller index for real estate, and the US one-month T-bill for safe financial assets. We
proxy expected returns by average returns over the 1981 to 2016 period. We then calculate average
portfolio returns by the education level of the household head.
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Households with heads with college education have annual rates of return that are higher on
average by 62 basis points, compared to households whose heads have less than college education.
We convert the difference to 5-year periods to use as input to our model. The implied value of xH

equals 0.0365.
To assess the robustness of our results, similarly to the approach in the previous section, we

analyze the contribution of demographic factors in this alternative scenario with persistent interest
rate heterogeneity presented in Figure F.2, and compare it with our primary scenario, shown in Figure
2, which assumes no persistence in interest rate heterogeneity.

Introducing persistent heterogeneity in interest rates slightly increases the contribution of rising
longevity to wealth inequality. In 1975, the contribution rises to 1.02 Gini points in the alternative
scenario, compared to 0.9 in the primary. By 2015, the contribution increases to 1.56 Gini points
in the alternative scenario and 1.4 in the primary, remaining close. By 2050, the contribution grows
further to 1.57 Gini points in the alternative scenario, compared to 1.45 in the primary.

Figure F.2: Baseline vs counterfactual scenario of constant longevity (persistently heterogeneous
rates of return)

Note: The black line shows the level of the wealth Gini coefficient in the baseline model with heterogeneity in rates
of return. The violet line illustrates the wealth Gini coefficient from a counterfactual simulation where mortality rates,
used both in calculating the population structure and in the consumer problem, are held constant at their 1955 levels,
while all other aspects align with the baseline simulation.

With heterogeneous rates of return, the overall Gini coefficient increases slightly, and the con-
tribution of demographic factors to wealth inequality rises modestly as well. This occurs because
higher returns for households with college education amplify the effects of rising longevity on wealth
accumulation. Longer lifespans allow individuals with higher returns to accumulate more wealth over
time, exacerbating inequality. Note also that households with college education experience a larger
increase in longevity (see Figure B.2). While the effect is more pronounced in the long term, the
interaction between rising longevity and return heterogeneity highlights how these factors together
contribute to the growing concentration of wealth.
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F.3 Model without discount factor shocks

Discount factor shocks increase asset dispersion among households that hold assets and serve as a
significant source of uncertainty after retirement. They also improve the model’s alignment with data
on the share of households without accumulated wealth. By including these shocks, the model more
accurately captures the level of wealth inequality, as they effectively represent various phenomena
not explicitly modeled. However, the interaction between these shocks and the old-age saving motive
in the context of rising longevity remains unclear.

To address this concern, we assume the absence of discount factor shocks. To implement this,
we set δs,j,t = δ̄ for all households and all periods. To examine the robustness of our findings, as in
the previous two sections, we investigate the role of demographic factors in this alternative scenario,
shown in Figure F.3, and compare it to the primary scenario depicted in Figure 2.

Figure F.3: Baseline vs counterfactual scenario of constant longevity (no discount factor shocks)

Note: The black line shows the level of the wealth Gini coefficient in the baseline model without discount factor shocks.
The violet line illustrates the wealth Gini coefficient from a counterfactual simulation where mortality rates, used both
in calculating the population structure and in the consumer problem, are held constant at their 1955 levels, while all
other aspects align with the baseline simulation.

The model without discount factor shocks produces Gini coefficient levels lower than those ob-
served in the data. Additionally, the decline in wealth inequality between 1950 and 1975 is much
smaller than in the primary scenario.19 However, the absence of discount factor shocks significantly
amplifies the role of demographics in shaping wealth inequality. Without changes in longevity, the
Gini coefficient is lower by 1.45 points in 1975, compared to less than 1 point in the primary cali-
bration. Later, rising longevity contributes more prominently to rising wealth inequality, with their
impact reaching 2.9 percentage points by 2015 and 3.75 points by 2050 (compared to approximately
1.5 points in the primary).

By removing discount factor shocks, an important source of heterogeneity is eliminated from the
model, which affects the level of the wealth Gini coefficient. However, this adjustment does not
alter our main conclusion regarding the contribution of demographic factors to wealth inequality. If

19This version of the model also generates almost no hand-to-mouth agents, in contrast to the more than 20%
observed in the PSID data.
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anything, it strengthens the argument for the critical role of rising longevity in shaping inequality
trends.

F.4 An alternative calibration: income process without “superstars”

The calibration of “superstars” is controversial. In the literature, the authors sometimes use the
“superstar” income state to match wealth inequality. Instead, we match the share of business income
in total household income. This modeling choice can affect the implications of income inequality for
wealth inequality in numerous ways, sometimes with the opposite directions.

To verify the role of this assumption for our key result, we consider an alternative calibration of the
income process (3). This calibration excludes the separate "superstars" state. Instead, we estimate
a standard five-state income process. Using PSID data, we jointly include salaried workers and
individuals categorized as "superstars" in the entire sample to estimate the deterministic component
ζs,j and the parameters of the process for the idiosyncratic component ωs,j,t. After discretizing the
AR(1) process for ωs,j,t, we do not add the additional state corresponding to business income.

Compared to the primary calibration, this sensitivity analysis results in slightly more persistent
idiosyncratic components for income processes: ϱω,L = 0.982 and ϱω,H = 0.987 (versus 0.980 and
0.985 in the primary calibration).

Figure F.4: Baseline vs counterfactual scenario of constant longevity (no “superstars”)

Note: The black line shows the level of the wealth Gini coefficient in the baseline model without the extra income state.
The violet line illustrates the wealth Gini coefficient from a counterfactual simulation where mortality rates, used both
in calculating the population structure and in the consumer problem, are held constant at their 1955 levels, while all
other aspects align with the baseline simulation.

To evaluate the robustness of our findings, we follow the approach taken in the previous sections
and analyze the role of demographic factors in this alternative scenario without "superstars," shown
in Figure F.4, and compare it to the primary scenario with "superstars," depicted in Figure 2.

The model without "superstars" produces the wealth Gini coefficient levels that are lower than
in the primary calibration. However, the absence of "superstars" slightly amplifies the role of de-
mographic factors in shaping wealth inequality. Without changes in longevity, the Gini coefficient
declines by 0.87 Gini points in 1975, compared to 0.9 in the primary calibration - almost identical.
Later, however, rising longevity contributes more substantially to rising wealth inequality, with their
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impact reaching 1.57 Gini points by 2015 and 1.77 points by 2050 (compared to approximately 1.5
points in the primary calibration).

In a model without ”superstars”, an important source of heterogeneity in our model, income
inequality, becomes less pronounced. This shift lowers the contribution of within-cohort inequality to
overall inequality, making the impact of between-cohort inequality more significant. Consequently,
the argument for the critical role of rising longevity in driving inequality trends is further strengthened.

F.5 An alternative calibration: higher productivity growth rate

The debate about future evolution of TFP growth is unsettled. In the main text, we follow Fernald
(2016). To study the sensitivity of our results to this assumption. We explore an alternative path of
projected total factor productivity (TFP). This scenario could represent, for instance, the widespread
adoption of AI (Brynjolfsson et al., 2021). Instead of assuming that the annual TFP growth rate
stabilizes at 0.6% as in our primary scenario, we consider an alternative where the growth rate
rebounds to over 1% annually. For this purpose, we use a projected path from the January 2025
vintage of the CBO Long-Term Economic Projections (Congressional Budget Office, 2025).

Note that due to differences in how the TFP is calculated in PWT 10 (our primary data source)
and in the CBO’s projections. These two measures are not directly comparable. For example,
Shackleton (2013) reports that the average annual TFP growth rate in 1960-2010 in the U.S. was
approximately 1.8%. The corresponding number in PWT 10 is 0.64%. We use the path from the
CBO as an example of a higher trajectory, as shown in Figure F.5. The assumed terminal TFP
growth rate is higher than in any period since the 1960s.

Figure F.5: Primary and alternative TFP growth rate
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Note: Data are taken from Penn World Tables 10 (variable rtfpna). The data was adjusted to five-year periods. We
also remove the cyclical component by applying Hodrick-Prescott filter. The values for each period are obtained as
five-year averages of the trend component. The black dashed lines is the extrapolated path we use in the baseline
calibration. The blue dashed line is the alternative projected path from Congressional Budget Office (2025) we use in
the sensitivity check.

Again, to evaluate the robustness of our results, we examine the contribution of demographic
factors in this alternative scenario, shown in Figure F.6, and compare it to the primary scenario
depicted in Figure 2. Figure F.6 serves as a counterpart to Figure 2 in the main text.

The alternative projection of productivity growth somewhat lowers the contribution of rising
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longevity to wealth inequality. In 1975, the contribution is 0.69 Gini points in the alternative scenario,
compared to 0.9 in the primary. By 2015, the contribution increases to 1.02 Gini points in the
alternative scenario versus 1.4 in the primary. By 2050, the contribution rises further to 1.08 Gini
points in the alternative scenario, compared to 1.45 in the primary.

Steeper TFP growth contributes to an increase in wealth inequality. Between 1975 and 2050,
the Gini coefficient grows by 5.83 points in the alternative scenario compared to 5.62 points in the
primary. This result is consistent with findings that slower TFP growth reduces wealth inequality, as
shown in Figure E.3.

TFP growth influences wealth inequality through multiple channels. Higher TFP growth leads
to higher interest rates, which tend to amplify wealth inequality, although theoretically it is not
impossible that they reduces it. TFP growth also affects the trajectory of income over the life cycle:
with steeper income growth, individuals have less incentive to save early in life, and this effect is
most likely particularly pronounced among low-income individuals, which tends to lead to increse in
wealth inequality.

In general, higher projected TFP growth should increase wealth inequality, as it is in our sim-
ulations. Additionally, with faster income growth, old-age savings become a less important motive
for asset accumulation. As a result, the contribution of demographic factors to wealth inequality
diminishes under scenarios of higher TFP growth.

Qualitatively, the role of demographic factors in shaping wealth inequality remains consistent
with our primary analysis. Quantitatively, however, its impact is somewhat smaller. Compared to
the primary calibration, the effect of increased longevity is reduced by approximately 25%.

Figure F.6: Baseline vs counterfactual scenario of constant longevity (TFP growth rate)

Note: The black line shows the level of the wealth Gini coefficient in the baseline model with alternative future TFP
growth rate path. The violet line illustrates the wealth Gini coefficient from a counterfactual simulation where mortality
rates, used both in calculating the population structure and in the consumer problem, are held constant at their 1955
levels, while all other aspects align with the baseline simulation.

F.6 An alternative calibration: unequal distribution of bequests

Halvorsen et al. (2024) analyze the wealth of the top 0.1% at age 50 in Norway and find that
high initial wealth among top wealth owners accounts for approximately one-third of the wealth gap
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between them and median households. In contrast, using the same data, Black et al. (2024) argue
that bequests are almost irrelevant. The discrepancies between these studies, particularly due to
differences in addressing the underreporting of inheritances, underscore the complexity of this issue.

The focus of our paper is on changes in wealth inequality within the “bottom 99%” in the
U.S., specifically the roles of rising old-age longevity and income inequality in driving these changes.
Evidence on the role of inheritances in the U.S. is mixed. For example, Hendricks (2001) report that
while bequests are not evenly distributed—only 5% of households inherit more than 5% of lifetime
earnings, and recipients of large bequests hold 2.5 times more wealth at retirement—inheritances
explain only a small portion of this wealth gap. Approximately 50% of households in the top 1%
of the wealth distribution in the SCF data did not receive any inheritance. Wolff (2002) and Wolff
and Gittleman (2014) argue that bequests decrease wealth inequality in the SCF data, while Boserup
et al. (2016) find that in Denmark, bequests reduce the top 1% wealth share but increase overall
wealth inequality. Overall, the literature indicates that while bequests may significantly impact the
top 1%, their influence on the “bottom 99%” appears limited and remains a topic of ongoing debate.

Given the ongoing debate in the literature, we examine whether an uneven distribution of be-
quests would affect our results. In the primary scenario, bequests are redistributed uniformly among
individuals in the same cohort and with the same education level. In the alternative scenario, be-
quests are allocated to individuals with the same education level aged j = 6 (corresponding to ages
45–49). The distribution is as follows: 70% of individuals receive no bequests, 20% receive 50% of
the total, and the remaining 10% receive the other 50%.

Following the approach from previous sections, we evaluate the robustness of our results by
examining the contribution of demographic factors under this alternative scenario. The results are
presented in Figure F.7 and compared to the primary scenario shown in Figure 2 in the main text.
Figure F.7 serves as a direct counterpart to Figure 2.

Figure F.7: Baseline vs counterfactual scenario of constant longevity (unequal bequest distribution)

Note: The black line shows the level of the wealth Gini coefficient in the baseline model with an unequal distribution of
bequests. The violet line illustrates the wealth Gini coefficient from a counterfactual simulation where mortality rates,
used both in calculating the population structure and in the consumer problem, are held constant at their 1955 levels,
while all other aspects align with the baseline simulation.

With the alternative bequest distribution the contribution of demographic factors to wealth

52



inequality becomes somewhat stronger. In 1975, the contribution is 0.98 Gini points in the alternative
scenario, compared to 0.9 in the primary. By 2015, the contribution increases to 1.66 Gini points
in the alternative scenario versus 1.4 in the primary. By 2050, the contribution rises further to 1.76
Gini points in the alternative scenario, compared to 1.45 in the primary.

These results indicate that with a more unequal distribution of bequests, the impact of demo-
graphic factors on wealth inequality becomes slightly more pronounced. This occurs because, with
a low probability of receiving a bequest, individuals respond more strongly to increases in longevity.
Consequently, the reinforcing effect of demographic transitions on inequality is amplified.
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