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1 Introduction

I’d rather be vaguely right, than precisely wrong

John Maynard Keynes

The discounted cash flow method (DCF) in firms’ or financial projects’ valuation is
well-established amongst many investment firms, analysts and final users despite equally
broad group of critics. The popularity of this toolbox is propelled by its simplicity and its
agreement with a natural, well grounded in financial world, concept of discounting. On the
other hand, the usual product of a DCF valuation being a single number is prone to subjec-
tive assumptions made during analysis, leaving the final user with the sensitivity tables at
best and little clue about risk from such a point forecast. Yet another important argument
against the DCF usage is an overly share of so called terminal value or residual value in the
final valuation point forecast. Paradoxically, a part of valuation that supposedly is residual,
in fact in many cases contributes to more than a half of the forecasted value.
The group of DCF’s final users has grown and it includes now not only professional in-
vestors but also retail clients, who obviously are less prepared to analyse mathematics and
economics behind each recommendation based on classic DCF. In spite of undoubted reg-
ulatory effort to increasing transparency and shedding missell practises during last decade
or two, there is still a room for improvement in the field of communication between pro-
fessional, hence better informed and quipped, investment managers or analysts and their
clients or any stakeholder from public domain. We believe that especially point valuations
as a result of classical deterministic DCF method may be misinterpreted by retail investors,
giving them undue confidence in certain price direction without proper specification of risks
involved. Increased retail investors’ protection through better information and risk assess-
ment of investments is the main motivation for this research, nevertheless we posit that
still some professional users of DCF method may benefit from the solutions proposals listed
here.
During the period that elapsed from the beginning of DCF’s wide popularity (mid of 60’s,
after Modigliani and Miller (1958)) we observed the outburst of applied stochastic methods
in mathematical finance, with special focus on financial derivatives’ modelling and valu-
ation. Impressive number of papers have been authored on practical usage of different
stochastic differential equations (SDE) in pricing models of contingent claims, started with
seminal works of Black and Scholes (1973) and Merton (1973). What made it possible was
the notion of risk-neutral probability measure under which the expectations of future price
realisations are taken. The assumptions of complete and arbitrage free markets led to theo-
rems of such a probabilistic measure’s existence making the derivatives pricing calculations
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henceforth relatively simple.
Coincidental to the derivatives’ model developments, the increase of computational power of
average PC influenced also other scientific branches as statistics, probability theory, econo-
metrics or numerical analysis and contributed dramatically to their expansion. Having this
in mind it is odd that we still are attached to point valuation, not the full density forecast
in DCF. The core concept and practical side of DCF method primarily stayed in determin-
istic domain probably because the method is positioned in so called physical risk measure,
it is usually impossible to implement no arbitrage assumption, it was meant to produce
one number - a point valuation to be used for accounting or investment purposes and the
dominant group amongst final users of the method were financial services professionals.
In one of the definitions of risk after Carmichael and Balatbat (2008) we read: "risk [is]
an exposure to the chance of occurrences of events adversely or favourably affecting the in-
vestment as a consequence of uncertainty". It is hard to imagine that point forecasts or
valuations are enough nowadays, especially when the number of users with different risk
appetites and investment horizons is growing. Elliott and Timmermann (2016) stated that
having many forecast’s (valuation) users whose loss functions are heterogeneous, the provi-
sion of density forecasts (valuations) is important.

2 Literature review

Literature review on how the notion of risk may be reflected in DCF valuation may be sum-
marised in the following classification of methods: scenarios and probabilistic cash-flows,
risk-adjusted discounting, Monte Carlo based methods.
First class is based on discrete scenarios generated by the analyst or investor in some esti-
mation or expert judgement process, where we may be faced with two forms: either we have
some probability mass function of outcomes attached to each timestep of our time horizon
or we are given some ordered outcomes labelled i.e. best, base-case, worst or optimistic,
most likely, pessimistic scenarios. The latter originated from techniques used in project
management and is summarized by US Navy (1958) and referred to as Programme Evalua-
tion and Review Technique. PERT was a pragmatic solution to quickly translate qualitative
labels of different scenarios into numerical representation, although the map was vague and
based only on first two moments with an assumption of Gaussian data generating process.
The former group of statistical methods are more idealistic, hence less common in prac-
tice, as they assume the analyst may produce discrete probability mass functions for every
outcome (cash-flow) and step in the project’s evaluation horizon. The literature is reach
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in theoretical examples illustrating cases of dependence or independence of cash-flows over
time (interested reader may confer, among others: J. C. Van Horne (1998), Damodaran
Aswath (2012), Brealey, Myers, Allen, and Mohanty (2012) or seminal papers of Hillier
(1963), Wagle (1967), Kazemi (1991)). However, these methods are based on the assump-
tion of normality of the variables involved making them less useful in density forecasting,
therefore some authors (i.e. Tung (1992)) suggested that some asymptotic approximations
may work better to reflect kurtosis and skewness of the variables’ distributions than Gaus-
sian. The most common approximation (used in VaR calculations nowadays1) was proposed
by Cornish, E A, Fisher (1938) and henceforth stood the test of time. The method is a
bit cumbersome and does not work in all cases, but the research on the qualitative prop-
erties of Cornish-Fisher expansion (CFE) is broad and one can easily consult papers such
as (Jaschke, 2002) to avoid misrepresentations. We will implement CFE both in cash-flow
density and valuation density representations in the latter part of this article.
Second class may be best described as risk-adjusment discounting. Poterba and Summers
(1995), Zenner, Berkovitz, and Clark (2009) are referring to practical side of DCF and sug-
gest that investment managers increase the internal hurdle rate (or discount rate) beyond
market-based cost-of-capital measures when evaluating projects and firms to compensate
for the fact that usually the cash-flows they use are derived from so called base-case sce-
nario, which tends to be too optimistic and does not allow for possibility of severe downside
risk. Brealey et al. (2012) even name the practise of adjusting denominator in the discount-
ing process as fudge factors. Because there is a reasonable conjecture that the forecasted
cash-flows are over-estimated (or upward-biased) Ruback (2010) proposes to decrease the
periodic forecasts if the omitted downside seems to be temporary or decrease the forecasts
and increase the discount rate at the same time if the downside omitted is permanent. The
idea falls into the same class as increasing the internal hurdle rate and gives little additional
knowledge on density of the forecast or valuation, but is very common in practise. We will
not use these techniques in our examples and argue that they maybe more harmful than
helpful for some final users of DCF.
Finally, one may argue also that Monte Carlo method and pure stochastic cash-flows ap-
proach form a distinct class in this search for risk representations in DCF. The idea was
popularised in financial industry by Hertz (1964) though still is less prominent than clas-
sical deterministic DCF method. In the financial literature, practical tone prevails, for
example: Kelliher and Mahoney (2000) introduces different distributions to DCF scheme
with a special focus on income-producing property valuation and Ali, Haddadeh, Eldabi,
and Mansour (2010) use MC simulations for valuation of internet companies. Since Monte

1Modified VaR, Modified Cornish-Fisher VaR, CFVaR
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Carlo simulation as such is a very deep and broadening subject it is not our ambition here
to try to summarize its current state. It suffices to state that, the method, when carefully
implemented may produce full density of possible valuation outcomes depending on the
data generating processes’ assumed form, parameters and covariance structure. Should we
are able to conduct a viable stochastic discount cash-flow valuation (SDCF) we would have
an informative density forecast as our end product.
The literature review was also conducted with respect to the second stage of the DCF
appraisal between the author of the valuation and the final, usually heterogeneous, users.
There is an obvious need to translate the density forecast into some measure that may
help in investment decision process. Markowitz (1952) suggested that the investor does
consider expected return a desirable thing and variance of return an undesirable thing , but
considering only first and second moment is definitely a waste of sometimes arduous model
building and simulation process. Roy (1952) in his seminal paper posits that investor will
prefer safety of principal first (sometimes) requiring some minimum acceptable return and
what matters the most is the R/V or reward-to-variability ratio (which concept evolved into
renowned Sharpe’s ratio). Since then so called downside risk measures flourished resulting
in such measures as: below mean semivariance, below target semivariance, lower partial
moments, Value-at-risk, VaR equivalent volatility.
This paper is organised as follows: Sections 3-5 treat on different sets of stochastic tools
with an ultimate goal of producing a density valuation, in particular, in Section 3 we ex-
plain how one may set-up an extensive stochastic model of different variables (governed
by stochastic differential equations) to be used in SDCF , Section 4 concentrates on less
demanding variant of SDCF where one is given a probability mass functions of discrete pos-
sible outcomes and Section 5 is dedicated to a very practical and popular case of three-level
estimates and their possible translations into density forecasts. In Section 6 we propose
some risk measures’ framework that may be implemented by individual investor or final
user of (S)DCF method. Section 7 concludes and offers suggestions for further research.

3 Fully-fledged Stochastic Discounted Cash-Flows

We start from a perfect world situation, in which we may set-up a reasonable SDCF model
from its foundations (or we are given such an extensive model), describing and designing
stochastic processes of every variable (as opposed to assuming its distribution in each time-
step of a considered investment horizon). For the sake of simplicity, but without a loss of
our argument we assume:

1. finite horizon of forecast (valuation) T ∈ R+, hence no terminal value
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2. D discrete time-steps of δ length2, such that δD = T , D ∈ N

3. stochastic processes governing the behaviour of selected variables as well as their
covariance matrix are obtainable a prori

4. deterministic discount rate3

5. no taxes

6. no debt

The key step in the fully-fledged SDCF’s design is to identify, which variables that influ-
ence our free cash-flows (or rather cash-flows to be discounted) are governed by stochastic
processes, which are merely scaled to such variables and which are supposed to be fixed
or semi-fixed. We abstract here from a certain detailed SDCF identification of variables
(naming them) and we propose the following representation of cash-flows:

CF (t) =
N∑
i=1

Ri(t)−
M∑
i=1

Ci(t) +
K∑
i=1

Si((Rj)
N
j=1, (Cj)

M
j=1, t) + F (1)

where: N,M,K ∈ N, Ri are the variables representing N revenue sources, Ci stands for
M cost generating processes, Si are scaled variables that depend on the whole vector of
Rs and Cs with a trend, and finally F is a sum of residual cash-flows assumed constant
in the model. One may argue that both revenue and cost groups of variables may fall
into one class, and note that fixed cash-flows are special cases of Si scaled variables. As a
consequence we propose a more general form of cash-flow representation:

CF (t) =
N∗∑
i=1

Xi(t) +
K∗∑
i=1

Si((Xj)
N∗
j=1, t) (2)

where N∗ ∈ N is a total number of variables for which we will define stochastic differential
equations and K∗ ∈ N stands for the total number of other variables and model’s compo-
nents which are functions of realizations of Xis and time.
In the second stage, we typically want to assume how the stochastic processes of the vari-
ables look like (intertermporal dependencies) and what are the interdependencies between
variables . We start with the following general form of stochastic differential equations
(SDEs) which describes the dynamics of Xi variables:

dXi(t) = ai(t,Xi)dt+ bi(t,Xi)dWi(t) (3)

dWidWj = ρijdt (4)
2i.e. for 10 year horizon with quarterly time-steps we would have D = 40, T = 10, δ = 0.25
3it may be an estimated weighted average cost of capital or any other valid rate that we require for

discounting
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where: a(·) stands for a drift function, responsible for the trend (if any), b(·) - a diffusion or
volatility function, and Wi(t) is a standard Brownian motion in Ft filtration. Note that we
assume some covariance structure4 of the Brownian motions driving the processes and define
their matrix as Σ. Furthermore, for the sake of simplicity, we assume that the parameters
that may form the drift and diffusion functions are not time dependent, hence the each
random variable is homoscedastic.
Obviously, we may consider more complicated SDEs in our SDCF models by inclusion of a
jump component (generated from a compound Poisson process), but we believe it would be
less practical since it would be hard to find proper justification of such a choice for a certain
variable in SDCF and a time series calibration could be a challenging task as well. Jump-
diffusion processes are usually used in finance to add heavier tail-risk features, but in the
case of typical variables we contemplate in discounted cash-flows method as: revenue, cost
of sales, cost of materials, capital expenditures, interest payments we do not find a sound
rationale to assume such a characteristics. Additionally, implementing correlation structure
to a model that includes both: compound Poisson processes and standard Brownian motions
may prove to be an arduous task, which we reckon, shifts the balance towards not using
jump-diffusion processes in simple SDCF framework.
The proposed general SDE (4) is flexible enough to accommodate for different features
needed in forecasting components of valuation, including but not limited to:

1. different forms of trend (i.e. flat, linear, time varying, quadratic) - allowing the
modeller to express her views on longer term mean behaviour,

2. trend may be adjusted for seasonal component - especially if we use monthly or quar-
terly (δ = {0.0833, 0.25}) time-steps in cash-flow forecasts,

3. geometric or arithmetical increments - as the modeller may want some processes to
have log-normal distribution (i.e for non-negative realisations of sales revenues or
non-positive for costs) and others - normal (i.e. sales margins, business confidence),

4. mean-reverting specifics - some processes may hover around some long-term average
swaying away from it and coming back with weaker or stronger force,

5. a correlation structure that allows to embed assumed strengths of co-movement of
certain pairs of variables (i.e. significant negative correlation between sales revenue
and sales margin)

4which, in our particular set-up of standard Brownian motions, is in fact a correlation matrix
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Since we usually want our variables to have realisations of the same sign (revenues being
always positive, costs being negative etc.) our natural choices would be: geometric Brownian
motion (GBM) i.e:

dXi(t) = µiXidt+ σiXidWi(t) (5)

or a classic SDE that guarantees that for interest rates and additionally has a mean-reverting
feature, namely, a Cox-Ingersoll-Ross (CIR) model:

dXi(t) = κi (θi −Xi(t)) dt+ σi
√
Xi(t)dWi(t) (6)

where: κi is a speed of adjustment, θi - a long term mean of a process. For the processes that
we want to allow to take both positive and negative values we may stick to the arithmetical
Brownian motion (ABM):

dXi(t) = µidt+ σidWi(t) (7)

or a mean-reverting Ornstein-Uhlenbeck (OU) process of a form (with the same parameters’
interpretation and above):

dXi(t) = κi (θi −Xi(t)) dt+ σidWi(t) (8)

Thirdly, we need to establish some functional forms of the variables (K∗ in total) that will
not be directly generated by the SDEs, but will depend on their realisation at time-steps d.
As there are infinitely many possible functional forms of Si((Xj)

N∗
j=1, t), we list below only

a few that we posit are useful in SDCF valuation:

1. linear combinations of other variables: Si(X1, X2, ..., XN∗) =
∑N∗

j=1 αjXj , where αj ∈
R - may be used in percentage of sales approach i.e. for modelling costs of sales that
are proportional to the sales revenue5.

2. piecewise constant functions: Si(Xj) =
∑R+1

r=1 κr (H (Xj − nr−1)−H (Xj − nr)), where
κr are constant parameters for different intervals , H(·) is a Heaviside function, nr for
r = {1, 2, ..., R,R + 1} is a partition of x - could be instrumental in modelling some
fixed costs that depend not continuously on production or sales.

3. contingent variables: i.e. Si(X1, X2, ..., XN∗) = min[0, G(X1, X2, ..., XN∗)], where
G(·) may be defined as linear combination or piecewise constant functions - they
maybe used to condition some additional cash-flows on stochastic variables differences,
i.e. when revenues are lower than fixed costs the modeller may want to off-set any
positive cash-flow generated and simulated from other variables.

5as described in Ali et al. (2010)
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To proceed with Monte Carlo simulation in our case we would need: discretised versions of
our continuous SDEs for random variables and a method to generate correlated standard
Brownian motions. There are many discretisation methods used in stochastic simulation
in finance (interested reader may consult Glasserman (2003), Jackel (2002) or McLeish
(2005)), but for our application with relatively small number of dimensions and time-steps
the most popular Euler discretisation would be the natural choice. We are interested in
path-wise rather than end-point simulation of our N∗ random variables because some of
our dependant variables have to be recalculated in every step as they may include some
assumed non-linear relationships between processes. It is easy to use Euler discretisation
to our four exemplary SDEs (5, 6, 7, 8):

X̂i,dδ = X̂i,(d−1)δ + µiX̂i,(d−1)δδ + σiX̂i,(d−1)δ

√
δϵi (GBM) (9)

X̂i,dδ = X̂i,(d−1)δ + κi

(
θi − X̂i,(d−1)δ

)
δ + σi

√
X̂i,(d−1)δδϵi (CIR) (10)

X̂i,dδ = X̂i,(d−1)δ + µiδ + σi
√
δϵi (ABM) (11)

X̂i,dδ = X̂i,(d−1)δ + κi

(
θi − X̂i,(d−1)δ

)
δ + σi

√
δϵi (OU) (12)

where d = 1, .., D is a number of time-step, ϵi ∼ N (0,Σ) is a correlated standard normal
variable via matrix Σ.
The second preparatory step to MC simulation is a choice of method to generate correlated
Brownian motions. The well-established method is to use Cholesky decomposition on cor-
relation matrix (refer to classic Glasserman (2003) for details), such that Σ = CTC and
C is a lower triangular matrix, and then embed this C matrix in transforming simulated
non-correlated standard normal variables (zi ∼ N (0, 1)) into correlated ones (column of
ϵi-s). In practice of SDCF modelling we may have limited number of stochastic processes
N∗ ≤ 3, in which case we derive analytical formulae to change zi-s into ϵiS using he assumed
pair correlations ρij :

ϵ1 = z1

ϵ2 = ρ12z1 +
√
1− ρ212z2

ϵ3 = ρ13z1 +
ρ23−ρ12ρ13√

1−ρ212
z2 +

√
1−ρ212−ρ223−ρ213+2ρ12ρ23ρ13

1−ρ212
z3

(13)

The above formula works well for both N∗ = 3 and N∗ = 2, where in the latter case one
should ignore the third equation.
Last but not least, the modeller may decide on imposing additional restrictions and adjust-
ments on a simulated path cash-flows. For example, one may want to zero-out all consecutive
cash-flows in a path after a certain cash-flow generated shows nonpositive values, to reflect
the default scenarios as well.
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The result of Monte Carlo simulation in a set-up generally described above, would be Bsim

generated paths of combined CF (t) variables, each path containing a sample of possible
cash-flows evolution. The series of CF values in each path should be discounted (recall that
we assumed deterministic discounting rates availability for the modeller) and the collection
of Bsim sums of discounted cash-flows is a basis for the desired density forecast we will use
in Chapter 5 for risk assessment purposes.
The fully-fledged N∗-factor SDCF model (henceforth: FFSDCF) overcomes the main dis-
advantages of classic DCF with sensitivities as described by Ali et al. (2010) or Kelliher
and Mahoney (2000) because it takes into account the interdependencies between variables
and captures the whole probability densities of possible realisations of different elementary
variables as well as of the final valuation.

4 Towards simplified SDCF

In this section we use the nomenclature and definitions set in the previous part of this
paper. Since proper specification of stochastic differential equations may be arduous and
cumbersome in some cases, the modeller may want to express hers views on variables Xi

behaviour in the future by deciding whether to take discrete or continuous approach to
them and deciding which specification to follow:

1. defining distributions (and their parameters) of variables Xi in every time-step d of the
forecast (D distributions for each of N∗ variables). In that case the trend is implicit
in the time evolution of the distributions.

2. defining distributions (and their parameters) of variables’ increments ∆Xi, the same
for every time-step d of the forecast (one distribution for each of N∗ variables). In
such case additional explicit assumption on trend component is needed, as well as the
size of increment ∆i for each variable.

Unquestionable advantage of the first approach is the flexibility of implementing any idea
about future behaviour of different variables in every time-step via different distributions
(i.e. normal, lognormal, Student’s t, uniform, triangle, beta, gamma, Pearson etc). The
application scope however seems to be limited due to the rising complexity even in normal
DCF horizons of, say, 10 time-steps with 3 stochastic variables, let alone more extensive
set-ups of SDCF. One way to make this method more implementable is to build the model
on discrete distributions of evolved variables using standardised probability mass functions
with limited number (henceforth: Q) of points6. Our task is then to define for each i and

6usually some small, odd number is considered: 3, 5, 7
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each d the mass points xi,dδ,q and their corresponding standardised probability pq.

P (Xi,dδ = {xi,dδ,1, ..., xi,dδ,q, ..., xi,dδ,Q}) = {p1, ..., pq, ..., pQ} (14)

where ΣQ
q=1pq = 1 and we read it P (Xi,dδ = xi,dδ,q) = pq for every q ∈ Q . In such case,

the modeller retains some flexibility of shaping probability densities7, but obviously loosing
the whole catalogue of named distributions’ characteristics and hence sometimes economic
interpretations. Another drawback is the discreteness of the standardised distributions,
which at the end result in a sparse histogram of possible valuations rather than the density
valuation we wish to obtain. Hence some transformation (i.e. calculating moments and
performing Cornish-Fisher expansions or using kernel density estimation) of the final sim-
ulation object will be necessary before using it in the individual risk assessment.
The second approach is closer in its origins to the fully-fledged SDCF shown in the previ-
ous, dedicated section. The main simplification is that we have to design one distribution
which governs the diffusion in each time-step and one trend function per variable instead
of N∗ × D distributions. For the discrete distributions we would have to define for each
variable Xi:

P (∆Xi = {∆xi,1, ...,∆xi,q, ...,∆xi,Q}) = {p1, ..., pq, ..., pQ} (15)

the same for every time-step d ∈ D. This simplification leads to much faster program-
to-compute times than the first method, but one should bear in mind that the discretised
trend should be explicitly additionally assumed here8. In case of continuous distributions
we would like to set for each variable:

∆Xi ∼ D(Θ) (16)

where D(·) is an assumed distribution and Θ is a vector of particular parameters of such
an object. In these decisions the method is comparable with the fully-fledged SDCF from
Section 3, but one should carefully choose the distributions’ forms to be conveniently in-
vertible and for which fast algorithms of inversion exist.
Correlation structure of our variables or their increments in environments of diversified
distributions (not necessarily all normal) may cause the simulation to be more demanding
and complex task than in the case of SDCF from Section 2. Obviously, only if all the
variables are orthogonal to each other then we have a simpler calculation. Unfortunately,
in other cases of several variables following different distributions we have to use copulas of
inverted distributions of these variables (therefore uniform on [0, 1]) or simulate correlated

7through both: vector of probabilities and distances between certain mass points xi,dδ,q
8discretised drift examples were shown in Section 2
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standard normal variables and then convert every variable to the desired final distribution
using proper probability integral transform (PIT)9. The latter algorithm is sometimes called
NORmal To Anything (NORTA), and as Xiao (2017) indicated the main challenge when
discrete distributions are also involved is to determine suitable correlation coefficient in
normal space for a specified (by a modeller) correlation coefficient. Deeper review of the
techniques necessary to simulate heterogeneous (by distribution) correlated variables is out
of scope of this article and we refer interested reader to the works of Chen (2001), Lebrun
and Dutfoy (2009) or Madsen and Birkes (2013).
Bearing our goal of presenting computationally simpler model in mind, we posit that stan-
dardised probability mass functions with some 5-7 weight points defined for every orthogonal
stochastic variable and every time-step may lead to simpler that full SDCF implementations
(henceforth: SSDCF) . The literature review showed that both discretisation of some vari-
ables’ distributions as well as allowing them to be from different classes, comes with a price
of higher complexity of simulation when the variables are supposed to be not orthogonal,
therefore in search for less involving calculation we should contemplate the assumption of
our SDCF model variables’ orthogonality.

5 Three-level estimates SDCF

In search for even simpler representation of stochastic cash-flows in DCF method we may
turn to the, so called, three-level estimates10 described in Section 2. This method may be
treated as a subclass of the specification (SSDCF) we detailed in the previous section with
the following differences:

1. we have three mass points for each stochastic variable

2. the probability mass function has to be specified with respect to probabilities, as we
have usually only qualitative labels for different scenarios: best, base, worse etc.

The mathematical representation of the three-level SDCF (henceforth: 3LSDCF) model’s
mass probability function is:

P (Xi,dδ = {xi,dδ,best, xi,dδ,base, xi,dδ,worse}) = {pbest, pbase, pworst} (17)

which shall be defined for every variable Xi and every time-step d ∈ D. The vector of
probabilities p = {pbest, pbase, pworst} should be specified as well. The literature and practice
point to different possible representations, i.e p = {1

6 ,
2
3 ,

1
6} in PERT, p = {1

4 ,
1
2 ,

1
4} in J. Van

9which is actually a usage of a particular copula - namely Gaussian copula
10one of the first usage of this name is found in Hertz (1964)
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Horne (1966), whereas the final decision is left to the particular problem’s modeller. There
are some practical aspects of this method to consider:

1. for the sake of simplicity we need to assume orthogonality of the variables11

2. since we have to establish xi,dδ,best, xi,dδ,base, xi,dδ,worse of the longer and longer forecast
horizons (d) we have to reflect the implied variance of the data generated process
somehow 12

3. the resulting from Monte Carlo simulation set of valuations will take very limited
number of values due to extensive discretisation of every variable involved, hence there
will be a need for some additional transformation (before mentioned: Cornish-Fisher
expansions or kernel densities) of the final results to acquire density forecast.

6 Assessing risk from individual user’s perspective using den-
sity valuations

Firstly, we discuss the resultant density object and possible transformations for every model
we discussed. As we have already signalled, only in the case of the fully-fledged SDCF the
result of Monte Carlo simulation will give the modeller the access to almost continuous
distribution of valuation outcomes. In two other specifications the product of simulation is
rather sparse histogram, which usually is not suitable for density forecast considerations.
However there are at least two groups of methods of smoothing out the valuation set, namely:
kernel density estimation and Cornish-Fisher approximation (Fisher and Cornish (1960)).
For the sake of completeness, we briefly explain how these tools may be instrumental in our
goal.
Kernel density estimation (KDE) is a widely used smoothing method in forecasting (reader
is may consult a seminal paper of Hyndman, Bashtannyk, and Grunwald (1996) and some
later works of Harvey and Oryshchenko (2012)). The cornerstone of KDE is a local density
estimator f̂h(v) with a given smoothing parameter h > 0 (sometimes called: bandwidth):

f̂h(v) =
1

Bh

B∑
i=1

K

(
v − vi
h

)
(18)

where B is a number of elements in a set VSDCF , h is a bandwidth used to build the kernel (it
may be estimated from data or we may use some rule-of-thumb to infer it), K(·) is a kernel
function (non-negative and such that

∫
RK(x)dx = 1) such as: normal, Epanechnikov,

11see comments in the previous section
12it would be natural to expect that the distance |xi,dδ,best − xi,dδ,worse| grows as d increases.
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bi-weight, tri-weight, triangular etc. We reckon normal kernels are appropriate to our
application because of their unrestricted domain, the characteristics which is particularly
useful in filling gaps of incomplete information:

K(x) =
1√
2π

e
1
2x

2

(19)

The choice of smoothing parameter h has a strong influence on the shape of our density
function. The higher h the smoother the density would turn to be, in the limit morphing
to normal density. The lower the parameter the more ragged the density would be, hence
some balance in the modeller’s decision is needed. We claim that for our application to
products of SDCF simulations - the so-called Silverman’s rule is enough to follow13.
Cornish-Fisher approximation (CFE) represents a different approach14 to smoothing based
on calculation of four first moments of a given sample. These non-central moments are used
in CPE to estimate quantile function of the population. As (Tung, 1992), Jaschke (2002)
suggest the method is cumbersome because monotonicity of the cumulative distribution as
well as convergence is not guaranteed. CPE is more accurate when returns ale close to
normal, which may not be the case in our valuations. It is worth underlying that we would
rather not expect Gaussian distribution of valuations, especially when there are more than
one stochastic processes and we have some state-contingent elements of the cash flow to be
discounted. Jaschke (2002) showed some safe intervals of adjusted third and forth moments
for which the method works sufficiently good. Since the method requires more attention
and care than KDE, we believe that the latter is more suitable to our end.
Secondly, having density distribution of valuations from FFSDCF or the transformed results
of SSDCF and 3LSDCF in the manner described above, one may go far beyond obvious
and simplifying measures (expected value and variance) and calculate precise probabilities
of different outcomes and compare them with some objectives or a line of defence. To this
end, it is easy to construct a quantile function to assess the probability of a certain valuation
to fall below a prescribed level:

Q(p, VSDCF ) = inf{v ∈ VSDCF ; p ≤ FSDCF (v)} (20)

where VSDCF is a set of all generated valuations v in a certain model and FSDCF (·) is the
cumulative distribution function. Roy (1952) posited that an investor will prefer safety of
principal first and that she would set some minimum acceptable return on an investment

13Silverman (1986) claims that the optimal bandwidth that minimises the mean integrated squared error

is given by hopt =
(

4σ̂
3B

) 1
5 ≈ 1.06σ̂B− 1

5 and σ̂ is a standard deviation of a sample
14some other methods to estimate a quantile function of a distrubution from a given sample: Solomon-

Stephens approximation, Johnson transformation, saddle-point approxination, Fourrier inversion (after:
Jaschke (2002))
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made, called disaster level. As Nawrocki (2000) suggests, Roy claims that the investor
would prefer the investment with the smallest probability of going below this disaster level.
Having the density valuation in hand we may modify and extend this framework to assess
risk from the perspective of an individual user in the following way:

1. define a return transformation of a valuation set by:

t(v, v0) =
{
v ∈ VSDCF → r ∈ R; r =

v

v0
− 1; v0 ∈ R ∧ v0 ̸= 0

}
(21)

where v0 is a reference point valuation, i.e current market price vmkt,d=0 of the invest-
ment15.

2. let ṼSDCF be the transformed set of returns and F̃SDCF (·) the cumulative distribution
function of transformed, in such a way, variable.

3. lets call stop-loss (tsl) the reference negative return t(v, vmkt,d=0) at which the po-
tential investor would have to terminate the investment with a loss in avoidance of
making even bigger losses on this investment in her subjective judgement16

4. lets call risk-free target (trf ) the reference return t(v, vmkt,d=0) which equals to the
return on investment of vmkt,d=0 units in risk-free instruments made for the a limited
time horizon h ≤ T , during which the investor assumes the valuation will materialize.

5. lets call break-even (tbe) the reference return which equals to zero17.

Then we may calculate the probability of exceeding the stop-loss return to the downside
as equal to F̃SDCF (tsl), probability of making losses on the investment F̃SDCF (be) and
the probability of not making at least risk-free rate F̃SDCF (trf ), which measures clearly
contribute to solving the incomplete information problem in case of some three-level PERT-
alike scenarios with sensitivity analysis. Probability of missing the expected value to the
downside is not very interesting as it is by the definition 0.5, but we propose here some
measures that may help the user (investor) in evaluating the character of a certain model
on the top of classic four moments (mean, variance, skewness and kurtosis):

1. implicit optimism ratio, which may be defined as probability of non negative valuation
to the probability of not hitting the stop-loss level18:

Ω =
1− F̃SDCF (be)

1− F̃SDCF (tsl)
(22)

15it may be an asking price in non-public auction as well, not necessarily the exchange traded instrument’s
price

16we believe that is closer to the Roy’s idea of disaster level
17it may differ from t0 by transactional costs influence
18for some non-tradable investments stop-loss level may not be feasible, hence we will take F̃SDCF (tsl) = 0
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2. market efficiency distance19, which evaluates difference in probability of achieving the
expected valuation (0.5) and the one of achieving better that risk-free results (if the
markets are effective and complete, but the first asset pricing theorem this difference
should be close to zero)

E = |0.5− F̃SDCF (trf )| (23)

3. reservation valuation at different percentiles: i.e. Q(0.01, ṼSDCF ), Q(0.05, ṼSDCF ) or
Q(0.10, ṼSDCF ).

We may go even a step forward and use utility theory to judge if some investment proposal
we consider in DCF is appropriate for a risk profile of a particular investor. Kahneman
and Tversky (1979) in his prospect theory presented and idea that may be particularly
interesting in our analysis. It may be rephrased in the overall utility measure:

U =

∫
R
U(ṽ)f̂(ṽ)dṽ (24)

where f̂(ṽ) is a density function obtained in the simulations and transformations described
before, and a special (in our case continuous) utility function is of a form:

U(ṽ) = ṽα1{ṽ≥0} − λ(−ṽ)β1{ṽ<0} (25)

where α, β > 0 are shape parameters and λ is a loss aversion parameter (in original works
of Kahneman and Tversky (1979) we may found α = β = 0.88 and λ = 2.25)
Therefore the density valuation as a result of SDCF Monte Carlo simulation may lay a
good basis for variety of risk measures that may be individualised to particular user’s
characteristics. One valuation set may yield in different decisions for distinctive investors.

7 Conclusions and further research

We discussed different possibilities of constructing density valuations and their application
in individualised investment risk assessment from the view point of a final user of a cer-
tain stochastic discounted cash-flow model. The review of stochastic techniques from a
practical perspective of DCF modeller showed that there are some choices and decisions to
be made during a model design phase. The space of degrees of freedom includes among
others: framework of a model20, variables assumed to be stochastic, forms of SDEs for each
stochastic variable, functional forms for non-stochastic variables, parameters of SDEs and

19or: model’s incompleteness
20FFSDCF, SSDCF, 3LSDCF
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other functions used to define variables, correlation structure or smoothing methods for the
final density valuation.
In every framework contemplated in this article it is feasible to generate density forecast
object, which may be used in investment risk assessment process made by individuals and
be the basis for a quantile function, higher moments calculation, stop-loss level set-up an
evaluation, proposed measures of: implicit optimism ration, market efficiency distance,
reservation valuations or even an overall utility in line with prospect theory.
Further research may be also conducted on calibration of a certain SDCF framework to
default risk parameters observed in the market of corresponding financial instruments. One
may argue that density valuation of a share should incorporate a default risk of that company
observed in its issued debt. We believe that there are ways to establish such a relationship in
stochastic frameworks of SDCF by manipulating mass of negative outcomes or shifting the
whole cumulative density function to the left. Moreover, from the regulatory perspective on
the relation between retail clients and financial institutions, in particular, the suitability of
different products to their needs, risk profile and knowledge, it would be wise to standardise
a group of risk measures and aggregate utility functions to be used as a simplified gauges of
appropriateness of a certain investment proposal to a particular investor with a particular
risk profile.
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