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Abstract 
Fragmented by policies, united by outcomes: This is the picture of the United States that emerges 
from our analysis of the spatial diffusion of Covid-19 and the scattered lock-down policies introduced 
by individual states. We first use spatial econometric techniques to document spillovers of new 
infections across county and state lines, as well as the impact of individual states' lock-down policies 
on infections in neighboring states. We find evidence that new cases diffuse across county lines and 
that the diffusion across counties was affected by the closure policies of adjacent states. Spatial 
impulse response functions reveal that the diffusion across counties is persistent. We then develop a 
spatial version of the epidemiological SIR model where new infections arise from interactions 
between infected people in one state and susceptible people in the same or in neighboring states. We 
incorporate lock-down policies and calibrate the model to match both the cumulative and the new 
infections across the 48 contiguous U.S. states and DC. Our results suggest that lax policies in the 
most lenient states translate into millions of additional infections in the rest of the country. In our spatial 
SIR model, the spatial containment policies such as border closures have a bigger impact on flattening 
the infection curve in the short-run than on the cumulative infections in the long-run.  
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1 Introduction

In this paper we assess the spatial diffusion of Covid-19 in the United States and the effect that

state-level lock-down policies have on that diffusion. Our analysis is motivated by the idea that, if

there were substantial spillovers of new infections between states, then the uncoordinated responses

at the state level may have exacerbated the outbreak of the disease. But, how large those inter-

region spillovers were, or are, is uncertain—as is the extent to which the relatively lax policies of

one state contributed to new infections in surrounding states. Indeed, as is now well-documented,

the virus spread quickly throughout the United States, with notable variations in state-level policy

to follow. By March 6, a majority of U.S. states had at least one confirmed case of the virus, and

by March 17 the last state (West Virginia) reported its first case. While the Center for Disease

Control (CDC) and and other federal entities issued guidance on appropriate measures to mitigate

the spread of the virus, the final decisions regarding the timing and the extent of restrictions were

made by individual states, and sometimes even counties. The first state-wide “shelter-in-place”

order was issued in California on March 19, but ultimately only 24 additional states followed suit

over the next two weeks. The compliance with social distancing measures also varied greatly across

regions (Painter and Qiu, 2020; Simonov et al., 2020). The goal of this paper is to assess the impact

of such a scattered policy response on the country-wide spread of the virus.

Our analysis follows a two-pronged approach. First, we employ both spatial econometric and

time-series methods to measure the extent of the spatial correlation between regions in the U.S.,

and to understand the dynamics, or the persistence, of that spatial correlation over time. To that

end, we estimate direct and indirect spatial spillovers from a variety of workhorse spatial models.

For each model the dependent variable is the simple growth rate of county-level cases, and our

primary covariate is a measure of the number of restrictions put in place in the state in which the

county resides. We find consistent statistical evidence that not only did new cases diffuse across

county lines, holding county level factors constant, but that the spatial diffusion across counties

was affected by the closure policies of adjacent states. Next, to measure the temporal dynamics of
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the spatial spillovers we generate “spatial impulse response functions” (IRFs), showing how long a

particular county was affected by its neighbors’ rate of new cases. We find that the spatial diffusion

of new cases is statistically significant and persistent over time, for at least ten days over our forecast

horizon. Considered together, our results from the spatial models and IRFs provide an informative

picture on the nature of the spatial correlation of the Covid-19 phenomenon. Our empirical results

suggest, too, that more stringent state-level restrictions are consistent with a decline in the growth

rate of new cases at the county level.

Second, we develop a spatial version of the standard epidemiological SIR (Susceptible-Infected-

Recovered) model based on Kermack and McKendrick (1927), which has been popularized in the

economics literature by Atkeson (2020b). In our model individuals can be infected by people from

their own states and from other states. Those inter-state contacts endogenously create a spatial

diffusion of the infections, with the speed of such diffusion depending on the model parameters

that measure the relative frequency of connections across state lines, potentially altered by social

distancing measures. We calibrate the model parameters by minimizing the distance between the

data and the model generated series. We then use the model to simulate the impact of lock-down

policies implemented in the states with the most restrictive and most lax policies.1 Our main results

in that section are twofold. First, if the individual states had the ability to restrict the travel across

their borders, infections would be smaller.2 Specifically, cutting the value of the calibrated inter-

state spillover parameter by 25% results in the reduction of country-wide infections by almost 40%

in the first 3 months, and by almost 7% in the long-run. Second, if the states with the more lenient

lock-down policies tightened them by one level, the cumulative cases in the remaining states would

be reduced by 2% in the first three months, and by more than 5% over the 21-month period.

Our analysis contributes to a large and quickly growing literature on the economics of Covid-19.

First, we expand the empirical literature that focuses on the spatial aspects of the outbreak. A few

studies analyzed drivers of spatial heterogeneity in the scope or severity of the Covid-19 pandemic:

1We discuss possible limitations arising due to the Lucas’ critique in Section 4.3.
2Of course, we do not suggest that giving the states such ability would be desirable. We are merely evaluating its

potential impact on the spread of infections across the whole country.
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Desmet and Wacziarg (2020) and Gerritse (2020) looked at US counties, Verwimp (2020) at Belgian

municipalities, and Ginsburgh et al. (2020) at French regions. Very few papers seemed to focus on

understanding the geographic spread of the infections. Kuchler et al. (2020) analyze the correlation

between the growth in new cases and the degree of social connectedness with the Covid hotspots,

using an aggregated data from Facebook. Cuñat and Zymek (2020) analyze geographical spread

of the virus in the U.K. by incorporating individual’s location and mobility decisions with the SIR

model. The most closely related study is Eckardt et al. (2020), where the authors analyze how the

border closures slowed down the spread of the virus. Our paper offers the first empirical attempt

to estimate the extent of spatial diffusion of Covid-19 in the United States. Our main objective is

to quantify the extent of inter-state spillovers and the impact of one state’s containment measures

on outcomes in surrounding states, with close attention paid both to containment measures and

possible non-compliance with them.

Second, our results are important for the discussion of policy coordination. It is quite well

known that in the presence of inter-state spillovers, an uncoordinated policy response may lead

to sub-optimal outcomes. In the context of Covid-19, the discussion in this area has been mostly

theoretical. Beck and Wagner (2020) provide a model of optimal international coordination, fo-

cusing on the timing of such coordination. Rothert (2020) uses a heterogeneous agents framework

with rich and poor households from Michaud and Rothert (2018) to shows that in the presence

of an uncoordinated response, a federal income-based redistribution can flatten the curve if the

state governments cannot easily increase welfare spending. Our paper offers the first empirical

insight into the actual magnitude of such inter-regional spillovers. Our findings suggest that those

spillovers are substantial and therefore emphasize the importance of a coordinated policy response.

Third, the variation in state-level restrictions plays a key role in our analysis. This associates

us with a number of papers that focus on the effectiveness of various social distancing measures

or on the compliance with the official rules.3 Painter and Qiu (2020) and Simonov et al. (2020)

show that compliance with social distancing rules in the U.S. is correlated with party affiliation,

3See e.g., Weber (2020), Pragyan Deb and Tawk (2020), Jinjarak et al. (2020).
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and with exposure to certain opinion-forming programs on Fox News. Briscese et al. (2020) show

that the compliance can vary over time and that people can become “tired of” restrictions. In our

analysis we use a measure of state-imposed restrictions and we also allow for imperfect compliance

with them. Our results indicate that stricter social distancing measures introduced by individual

states, and better compliance with them, limit the spread of the disease not only within those

states, but also in the neighboring states. Conversely, the lack of such restrictions makes it harder

for the state’s neighbors to contain the virus.

Finally, following Atkeson (2020b), a number of papers have contributed to modelling the spread

of the pandemic. The SIR model has become the standard in that literature with different papers

suggesting different modifications, depending on the paper’s focus.4 The closest papers to ours are

Bisin and Moro (2020) and Acemoglu et al. (2020). The former builds a theoretical framework

that formalizes aspects such as local travel and changes in individuals’ behavior, but their focus

is on the local diffusion around the hot-spot of the outbreak. The latter develops a multi-group

version of the SIR model where infection risks differ across population groups (e.g., nursing homes,

schools, etc.) and allows for the transmission of infections between population subgroups. Our

main contribution is to develop a spatial version of the benchmark SIR model that allows us to

quantify the spillover effects of local infections as well as local lock-down policies on the spread of

the virus in other parts of the country.

2 Covid-19 outbreaks and policy responses across the U.S.

We start by documenting some stylized facts about the time and spatial dimensions of the spread

of Covid-19 and containment measures in the United States.

2.1 Data

We utilize three data sources in this paper:

4A non-exhaustive list of examples includes Atkeson et al. (2020), Holden and Thornton (2020), McAdams (2020),
Favero (2020), Berger et al. (2020), Hornstein (2020), or Ellison (2020).

4



1. Daily county-level data on confirmed cases and deaths are from the Covid-19 Data Repository

by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (Dong

et al. (2020)).

2. Daily state-level data on business closures and mandated social distancing measures are

from the Institute for Health Metrics and Evaluation (IHME). Specifically, we utilize IHME-

compiled information on five such metrics including the date on which a state proceeded

as follows: forbade mass gatherings, introduced an initial round of business closures, closed

schools, closed all non-essential businesses, and adopted a stay-at-home order. For each day

in our time series, we sum the number of currently-imposed restrictions within a state to gen-

erate a measure of government-imposed behavior restrictions at the state level. This metric

is thus a count variable taking values 0 through 5, which we call r-score.

3. County-level data on socioeconomic, demographic, and geographic characteristics from the

Bureau of Economic Analysis (BEA). In the analysis below we incorporate county-level infor-

mation on population density for the year 2018 (BEA and U.S. Census Bureau), the share of

the county-level population over age 60 for the year 2018 (U.S. Census Bureau), and partisan

voting share from the 2016 presidential election.5

2.2 Covid-19 cases across time and space

In this section we conduct some basic visual analysis to demonstrate the extent of the Covid-19

epidemic in the United States. We do so to provide a descriptive look at the dynamics of the

inter-state and inter-county spillover of the virus.

Figure 1 displays the spread of Covid-19 across the whole country over time. The blue line

plots the proportion of counties with confirmed cases over time, demonstrating the breadth of the

epidemic. The red line reveals its depth, displaying how the share of the population living in a

county with at least one confirmed case quickly rose from close to zero to close to one during the

5Via Luis Sevillano on GitHub, but originally published in the New York Times and available here.
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Figure 1: Affected Counties and Population Over Time
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month of March. It is clear that from March through June, Covid-19 transitioned from a fairly

sparse outbreak to a widespread epidemic among counties along both the extensive and intensive

margins.

New York was the first state in the U.S. to experience a very significant outbreak, with its

epicenter in New York City (NYC). A simple inspection of the dynamics of case numbers in and

around NYC indicates the importance of interstate spillovers (within the CT-NJ-NY-PA areas).

Figure 2 shows a rapid expansion of per-capita case numbers in New York during the second half

of March, followed by all other states surrounding the NYC metropolitan area in late March and

the first half of April. In the case of New Jersey, per-capita case counts caught up to—and began

to outpace—those of New York in mid-April.

Closer inspection at the county level in other metropolitan areas reveals similar patterns. Figure
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Figure 2: Cases in New York and Surrounding States
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Figure 3: County-level Cases in Major Metropolitan Areas
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3 plots confirmed county-level cases per-capita over time for four particular metropolitan areas:

Chicago, IL (top left); Houston, TX (top right); Miami, FL (bottom left); New Orleans, LA

(bottom right). In each case, the county containing the urban center appears to trigger the area

outbreak (respectively: Cook County, IL; Harris County, TX;6 Miami-Dade County, FL; Orleans

Parish, LA). In the case of Chicago, which lies on the Illinois-Indiana border, the spillover appears

to extend to Lake County, IN. Together, these figures provide preliminary evidence of transmission

dynamics in which Covid-19 cases emanate from major urban centers into the surrounding areas,

and across state lines.

6Here the outbreak appears to stem from both Harris County (Houston) and Galveston County, which is also a
fairly densely populated area.
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Figure 4: Containment Measures Over Time
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2.3 Containment measures across time and space

There is also clear evidence that during the initial shutdown of March and April, government-led

containment measures varied geographically and over time. Figure 4 displays the transition from

no official containment measures (early March) to universal adoption (of at least some measures)

by all states by early April. The most action occurred between mid-March and early April. 60

percent of the U.S. population lived in a state with no containment measures on March 15; however,

by April 1 nearly 60 percent of the population lived in a state that had adopted all five factors

described by our r-score variable.

In the sections below, our spatial-econometric analysis and our spatial model and calibration

exercise seek to understand further the geographical spillovers across county and state lines. For

such effects to be meaningful and identifiable, there must be substantial variation in government-led
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Figure 5: Share of U.S. Population Living in a County with Different Containment Measures than
its Five Nearest Counties
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Covid-19 responses near state borders. Figure 5 displays the share of the U.S. population living in

a county with a different level of containment measures (i.e., r-score value) than at least one of its

five nearest counties, over time. During the containment action period of mid-March through early

April, this share quickly rose to about 23 percent of the population, fluctuated between 15 and 23

percent for the next two weeks, and then settled at 15 percent for the remainder of April.

3 Estimating the Spatial Diffusion of Cases

In this section and the next we estimate the spatial characteristics of cases. First, we estimate the

spillovers of cases from county to county in the United States using oft-used spatial econometric

models. Second we then use a VAR-framework to estimate “spatial impulse response functions,”

which capture the time-series persistence of the spatial spillovers.
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3.1 Estimation of Spatial Correlation

For the first exercise, we estimate the following standard spatial models: the Spatial Durbin Model

(SDM), the SDM model with spatially correlated errors (SDM Error), the SAR Model, and the

SLX model. We start with SDM which, in a panel setting, can be written as:

Yt = ρWYt + βXt + θWXt + δ + εt,

where Yt = Y1,t, ..., YN,t is a NT×1 vector of the dependent variable; WYt is the spatial lag term; Xt

is an NT × r matrix of r exogenous variables, δ = δ1, ..., δN is the vector of region-fixed effects; and

WXt is the spatial lag term for the exogenous variables, which here we refer to as the “exogenous

spatial interaction” term (to distinguish this from the spatial lag variable).7 The spatial term WYt

captures the direct effect of the spatial correlation in determining the dependent variable (capturing

what otherwise might be an omitted variable). The SDM error model amends the typical SDM to

include a spatially correlated error. The SAR model imposes a restriction that θ = 0, and the SLX

model imposes a restriction that ρ = 0.

For the models above, Yt is the county level cases, and Xt is the r-score. We include a county-

level fixed effect to control for county-level features such as population density, relative industry,

employment shares, and so on (given the data sources, such variables are fixed over the time period).

We report the baseline spatial results for each model, along with the direct and indirect spatial

effects. We also consider additional specifications, including with the r-score lagged 14 days, and

with the lag of the dependent variable included as a regressor.

Tables 1 and 2 report the results for the four models. Table 2 displays results with a lag of the

dependent variable included in each model; we refer to this as the dynamic version.8 We report

baseline results shown in Tables 1 and 2 for purposes of comparison with “traditional” approaches

7See Halleck Vega and Elhorst (2015) for a detailed discussion on the SLX model and the other spatial models
employed in this paper.

8There are various versions of spatial models with temporal dynamics. Elhorst (2012) refers to a SAR model
augmented with temporal lag of the dependent variable and a temporal lag of the spatial lag as the “time-space
dynamic model.” Pace et al. (1998) provide an example with their “STAR” model. Brady (2014) provides a brief
overview of some of these models. See also Debarsy et al. (2012) for discussion.
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Table 1: Baseline results for Spatial Models of New Cases (measured as a growth rate)

SAR SAR SLX SLX SDM SDM SDM Error SDM Error

r-score -6.223*** 4.280*** 3.851*** 4.938***
(0.278) (1.138) (1.130) (1.096)

r-score 14 day lag -6.030*** 2.691** 2.292** 3.192***
(0.273) (1.119) (1.112) (1.080)

W × cases 0.156*** 0.152*** 0.155*** 0.151*** 0.552*** 0.544***
(0.00295) (0.00298) (0.00295) (0.00298) (0.00497) (0.00515)

W × r-score -12.75*** -10.99*** -8.868***
(1.203) (1.195) (1.141)

W × (r-score 14 day lag) -10.71*** -9.077*** -6.938***
(1.183) (1.176) (1.125)

W × error -0.521*** -0.512***
(0.00783) (0.00803)

N 276408 276408 276408 276408 276408 276408 276408 276408

Notes: Spatial models estimated from April 1 through June 28, controlling for county-level fixed effects. Dynamic refers to the
lag of the dependent variable included in the model. 14 day lag of r-score is the value from 14 days prior. The Wald test for
spatial correlation is statistically significant in all models. Standard errors are in parentheses. * p < .1, ** p < .05, *** p < .01.
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Table 2: Dynamic Version of Spatial Models

SAR SAR SLX SLX SDM SDM SDM Error SDM Error

cases (t-1) 0.0493*** 0.0488*** 0.0544*** 0.0536*** 0.0493*** 0.0488*** 0.0500*** 0.0495***
(0.00190) (0.00190) (0.00191) (0.00191) (0.00190) (0.00190) (0.00171) (0.00171)

r-score -5.900*** 3.183** 2.698** 4.007***
(0.364) (1.344) (1.336) (1.297)

r-score 14 day lag -5.940*** 2.629** 2.245** 3.078***
(0.273) (1.118) (1.111) (1.078)

W × cases 0.150*** 0.148*** 0.149*** 0.147*** 0.545*** 0.540***
(0.00298) (0.00299) (0.00298) (0.00299) (0.00496) (0.00505)

W × r-score -11.30*** -9.571*** -7.823***
(1.440) (1.431) (1.364)

W × (r-score 14 day lag) -10.50*** -8.929*** -6.714***
(1.181) (1.174) (1.123)

W × error -0.521*** -0.515***
(0.00777) (0.00785)

N 276408 276408 276408 276408 276408 276408 276408 276408

Notes: Spatial models estimated from April 1 through June 28, controlling for county-level fixed effects. Dynamic refers to
the lag of the dependent variable included in the model. 14 day lag of r-score is the value from 14 days prior. The Wald test
for spatial correlation is statistically significant in all models. Standard errors are in parentheses. * p < .1, ** p < .05, ***
p < .01.
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to spatial estimation, of which these models represent. However, as emphasized in LeSage and

Pace (2009) and elaborated upon in the spatial literature since, one should not use these “baseline”

results to interpret the spatial effects. As explained in detail by Golgher and Voss (2016), one

cannot interpret the coefficients as typical partial derivatives (see Elhorst (2010) or Elhorst (2014),

for additional explanation). Instead, it is more appropriate to focus on the direct and indirect

effects of these models.

Table 3 displays those direct and indirect spatial effects from estimating each model. The

direct effect is the effect of a change in explanatory variable X, in county i, on the number of new

Covid-19 cases in county i. The indirect effect is, instead, the effect of the change in explanatory

variable X, in county j, on the average case levels in surrounding states. The indirect effect is the

spatial spillover. We eschew discussing the details of how to derive these effects; instead, we refer

the reader to Golgher and Voss (2016), LeSage and Pace (2009), or Elhorst (2010) for technical

explanations.9

In all cases, we employ a contiguity matrix (row-normalized) since this version of the spatial-

weighting matrix is the most common in the spatial literature though we considered other versions

for robustness (such as an inverse-distance-based matrix), but do not report those results here for

brevity. Tables 1 and 2 help underscore the spatial spread of county-level Covid-19 cases—all pa-

rameters are statistically significant across the various models. The Wald test for spatial correlation

is statistically significant for each model (the Wald results are not shown explicitly in Tables 1 and

2). As noted, we eschew focusing on the parameter estimates from Tables 1 and 2 an instead focus

on the direct and indirect effects reported in Table 3.

As displayed in Table 3, the direct effect of the r-score—the “own” county effect—is negative

in the SAR model, but positive in the other models. This may reveal these estimates are affected

by endogeneity between the r-score and the change in cases each day—that is, state governments

9For a “crib-note” version of these effects, the direct effect for the SDM model shown above can be expressed

as,
(

3−ρ2
1−ρ2

)
βk +

(
3ρ

3(1−ρ2)

)
θk, which is a re-print from Elhorst (2010) using an example with three regions. And, the

indirect effect (again, from Elhorst (2010)) is,
(

3ρ−ρ2
3(1−ρ2)

)
βk +

(
3+ρ

3(1−ρ2)

)
θk. The point, here, is the direct and indirect

effects are a combinations of the baseline model parameters.
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Table 3: Direct and Indirect Spatial Effects

SAR SLX SDM SDM Error SAR SLX SDM SDM Error

Baseline Baseline with 14 day lag of r-score

Direct
r-score -2.039 1.155 0.880 1.202 -6.055 2.691 2.055 2.523

0.000 0.300 0.415 0.232 0.000 0.016 0.058 0.013
Indirect

r-score -0.370 -3.900 -3.606 -4.030 -1.051 -10.701 -10.036 -10.729
0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.000

Total
r-score -2.409 -2.745 -2.727 -2.827 -7.106 -8.011 -7.981 -8.206

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

SAR SLX SDM SDM Error SAR SLX SDM SDM Error

Dynamic Dynamic with 14 day lag of r-score

Direct
cases (t-1) 0.049 0.054 0.049 0.054 0.049 0.054 0.049 0.053

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
r-score -5.924 3.183 2.452 3.280 -5.963 2.629 2.018 2.436

0.000 0.018 0.060 0.007 0.000 0.019 0.063 0.016
Indirect
cases (t-1) 0.008 – 0.008 0.056 0.008 – 0.008 0.055

0.000 – 0.000 0.000 0.000 – 0.000 0.000
r-score -1.016 -11.294 -10.522 -11.656 -1.005 -10.493 -9.845 -10.336

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Total
cases (t-1) 0.058 0.054 0.058 0.110 0.057 0.054 0.057 0.108

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
r-score -6.940 -8.111 -8.070 -8.376 -6.969 -7.865 -7.826 -7.900

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Notes: Spatial models estimated from April 1 through June 28, controlling for county-level
fixed effects. P-values are in italics. Dynamic refers to the lag of the dependent variable
included in the model. 14 day lag of r-score is the value from 14 days prior.
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are responding to their own case counts in determining the lock-down measures).

However, the indirect effect—the spatial spillover—of a change in the r-score in surrounding

counties is negative in each model (with either the 14-day lag of the score or the current value).

Note, for this variable in particular, the spillover will come from adjacent counties in other states,

since our r-score variable will be identical for counties within a state. For the dynamic versions, the

results are similar with respect to the signs of the effects—though for the r-score estimates (direct

and indirect) the magnitudes are affected by the including of the temporal lag of cases.

The results from the standard spatial models indicate the relevance of spillovers related to the

spread of Covid-19. This is not necessarily surprising, but this exercise provides clear statistical

evidence on the spatial relationships not only between the spread of cases across regions but also

how that spread was affected by the closure policies of adjacent states.

To further understand the spatial characteristics of the growth rate of new cases across counties,

in the next section we consider the spatial “diffusion” of new cases across counties—that is, the

temporal response of county i’s cases in response to a change to its neighbors’ caseloads.

3.2 Estimation of Spatial Impulse Response Functions

To estimate the temporal diffusion of the spatial connection between counties, we follow Brady

(2014), Holly et al. (2011), Kuethe and Pede (2011), and Pollakowski and Ray (1997), and use

an autoregressive-based strategy to measure the dynamics of spatial spillovers. While each of

those studies focused on housing market spillovers, the methods therein are easily applicable to

the county-level data on Covid-19 cases. In the latter three papers, a region’s dependent variable

is modeled as a function of the same variable in surrounding regions and the impulse response

functions calculated to measure the spatial spillovers are estimated from a VAR.

In this application, we focus on single-equation estimation since, as demonstrated in Auerbach

and Gorodnichenko (2012), and Brady (2011, 2014), one can easily generate impulse response func-

tions in the single-equation setting using Jordà (2005) local linear projections technique (as opposed

to employing a fully-specified VAR). The basic motivation is that impulse response estimates can be
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produced from a single equation by projecting the endogenous variables in a system onto their lags

for each horizon, h. Specifically, to paraphrase Auerbach and Gorodnichenko (2012), if j = 1, ..., h,

and you are estimating some dependent variable as a function of its own lag and some other factor,

X, then the IRF is estimated from the sequence of regressions:

Yt+1 = ρ1Yt−1 + β1Xt + εt

Yt+2 = ρ2Yt−1 + β2Xt + εt

...

Yt+h = ρhYt−1 + βhXt + εt

The impulse response estimates of the response of Y to a “shock” to X are, IRF = β̂1, β̂2, ..., β̂h.

This sequence of coefficient estimates approximates the impulse response coefficients you would

recover from a VAR using recursive methods (under the null hypothesis as noted by Auerbach and

Gorodnichenko (2012), which assumes the data generating processes are the same). However, the

sequence estimated directly is not “tied” to the recursive structure of the VAR-generated impulse

response functions—which is one reason Jordà (2005) mentions the the direct estimates are less

subject to mis-specification.

Plagborg-Møller and Wolf (2019) provide a detailed discussion on the comparison between

VAR-generated IRFs and the local projection approach; Rana and Shea (2015), Haug and Smith

(2012) and Jordà et al. (2016, 2020) are other examples of the local projection technique. In the

spatial-oriented literature, Brady (2011, 2014) estimate local projection-generated impulse response

functions from SAR and dynamic SDM models for housing price data at the county level and state

level in the U.S., respectively.

We first estimate county i’s growth rate of new cases as a function of the same variable in its

five nearest neighbors, and the t − l lag of each, along with a county-level fixed effect. We define

“nearest neighbors” by distance, using geospatial coordinates to identify the closest neighboring
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Figure 6: Response of county i ’s new cases to a shock to new cases to cases its j th-nearest neigh-
boring county

Notes: Estimated from single-equation autoregressive-distributed lag model with the time t  and t-1  values of each independent variable (each neighbor), and including a county-
level fixed effect. Nearest neighbor is measured by distance. New Cases measured as a simple growth rate.  
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county, the next closest, the third closest and so on up to the fifth closest neighbor.10

As an alternative, we eschew the fixed effect and instead include the following county and state

level variables: the r-score for county i and the r-scores of its five-closest neighbors; the population

density of county i and the population density of the five closest neighbors; the share of county i’s

population over the age of 60; and the share of voters in county i that voted Republican in the

2016 presidential election.

Figure 6 reports the IRFs of county i’s response to new cases in its nearest five neighbors over

a forecast horizon of ten days (95 percent confidence intervals are constructed using Driscoll-Kraay

standard errors). These results are from the specification that includes the county-level fixed effect.

For each of the nearest five neighbors, the response of new cases in county i increases and this

increase persists for the duration of the forecast horizon (with a gradual decay). The effect of each

10This is similar to Pollakowski and Ray (1997) who include the lags of price changes in adjacent regions included
as regressors in an equation for a change in housing prices across regions within the United States. Kuethe and Pede
(2011) do something similar in their study of housing prices in the western part of the United States, as do Holly
et al. (2011) in their analysis of housing prices in the United Kingdom. One difference from our estimation with Holly
et al. (2011) is we do not specify a “dominant” region, since we wish to leave the possible spread “unconstrained” in
the estimation.
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Figure 7: Response of county i ’s new cases to a shock to new cases to cases its j th-nearest neigh-
boring county: county and state controls

Notes: Estimated using local projection technique from single-equation autoregressive-distributed lag model; specifications included county and state level controls. See text for 
details. Nearest neighbor is measured by distance. New cases measured as simple growth rate. Sample from March 31st through June 28th.  
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neighbor on county i’s cases is about the same, which makes sense from a geographic perspective.

Since the “nearest” is measured using latitude and longitude coordinates, in general the nearest

neighbors will be those that surround the county in its own state or in bordering states. In other

words, the IRFs reveal that spillovers, on average, appear to come from all sides of county i. With

respect to the magnitudes, recall that ”new cases” is measured as a simple day-to-day growth rates.

Figure 7 displays the same estimates, but for the specification with county-level and state-level

covariates. The responses do not differ much compared to those displayed in Figure 6. With respect

to the response of the new cases in county i to the other covariates, only for the r-score can we

report any meaningful dynamics. The population density and the other shares-variables mentioned

above do not vary over time in our sample.

For the r-score, which is a state-level variable, we find that only the within-state r-score matters

for the growth rate of new cases. Figure 7 displays this response. At each horizon the response is

negative. It is worth noting, of course, that the dynamics of the r-score variable are “lumpy”—the

r-score changes at discrete and infrequent intervals, with the frequency and the value depending on
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Figure 8: Response of County New Cases to state-level r-score

Notes: See text for definition of r-score
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the state. Moreover, we find little response of the response of county i’s new cases to the r-score

of counties in surrounding states (therefore, we do not report these figures). This, too, may not

be surprising since this effect will only record the relationship between “nearest neighbors” if those

counties are in different states. We also consider a variation of this relationship and isolate only

those counties that had a nearest neighbor in a state where the r-score differs by two or more.

However, we find no statistically significant relationship in that case either.

On balance, the “spatial” IRFs support the notion that the number of new cases easily spread

across counties and states and provide a “stylized” picture of that spatial diffusion—the spatial dif-

fusion is statistically significant and persistent over time. The spatial IRFs provide an alternative

perspective from the “static” spatial models estimated in section 3. Considered together, however,

both the traditional “off-the-shelf” spatial models and the spatial IRFs provide an informative pic-

ture on the nature of the spatial correlation of the Covid-19 phenomenon. As an added perspective,

too, the estimation provides some insight into the effectiveness of the state-level closures—more

stringent measures are consistent with a decline in the growth rate of new cases at the county level.
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4 Spatial SIR and Counterfactual Experiments

The previous sections provide evidence of a substantial degree of inter-state spillovers of Covid-19

across regions. In this section, motivated by that evidence, we construct and calibrate a structural

SIR model, similar to the one described in Atkeson (2020b), Eichenbaum et al. (2020), Glover et al.

(2020), or Fernández-Villaverde and Jones (2020), but with a few modifications. Most importantly,

the model allows for infections across state boundaries. We then use the model to evaluate the

extent to which the presence of such spillovers contributed to the spread of the infections in the

U.S. and within each state. We also evaluate how lock-down policies implemented in one state

impact the rest of the country.

At this stage, our results need to be treated with some caution. The outbreak is still in its

early phase, and our data covers only the first 5 months, with many unreported cases, and with a

possibly large but unknown number of cases “imported” from other countries (the model only con-

siders internal transmission). We abstract from a number of features that affect the spread of the

disease over time, such as voluntary changes in people’s behavior11 or the change in infectiousness

of people who are still infected. Additionally, as pointed out by Fernández-Villaverde and Jones

(2020), the identification of parameters in the compartmental models such as the SIR model can be

challenging (this is mostly discussed by Atkeson (2020a) in the context of estimating the fatality

rate, which is not the central point of our analysis). We partially address this last issue by con-

sidering alternative specifications that differ with respect to the free parameters, and by exploring

how those specifications affect different parts of the model fit. We believe our preliminary analysis

can still provide useful insights into both the nature and the potential magnitude of inter-state

spillovers.

11We account to some extent for the impact of changes in social distancing measures and the state-specific effec-
tiveness of those.
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4.1 The model

The model is an extension of the SIR model that allows us to account for the spatial diffusion

of infections. We specify the model in discrete, rather than continuous time. In each period t,

the initial population of region n is divided into four disjoint sets: Susceptible (S), Infected (I),

Recovered (R), and Dead (D):

Popn,0 = Sn,t + In,t +Rn,t +Dn,t

and population at time t is: Popn,t = Sn,t + In,t + Rn,t. The new infections in state n result from

interactions between susceptible people Sn in that state, with infected people in potentially all

other states In′ , where n′ = 1, ..., N . The new infections in state n at time t are given by:

Inewn,t =
Sn,t
Popn,t

·
∑
n′

ρ(n′, n) ·
√
βnβn′ ·

√
κn,tκn′,t · In′,t

In the expression above, the whole term ρ(n′, n) ·
√
βnβn′ ·

√
κn,tκn′,t describes the average number

of close contacts that a person from state n has with a person from state n′ in day t. The close

contact is defined as one that would result in a transmission of a virus from an infected person to

a healthy person. The new infections in state n then occur when an infected person from state n′

— In′,t — comes in a close contact with a susceptible person from state n. The probability that a

person we come in a close contact with is susceptible is
Sn,t
Popn,t

.

The parameter βn measures the average number of distinct inter-personal contacts that any

person in state n has on a regular day. We allow this parameter to vary across states, given the

substantial heterogeneity in the fraction of people living in densely populated areas. We expect,

of course, that a typical person in New York will have more distinct inter-personal contacts than

a person living in Montana. At this stage we assume βn is constant over time. It is certainly

possible that the typical number of inter-personal contacts will vary over time in each state, and

it is quite likely that this variation will differ by state (for example, the value of β would likely

plummet during the Spring Break in college towns but skyrocket in the nightclubs or bars in

Florida). Given how specific this time variation would be to individual states, we have decided
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to assume it away, and only allow the model to have a cross-sectional variation in β, which yields

49 parameters to be calibrated. We also consider a simpler specification, with three rather than

49 parameters, where βn is a polynomial function of the population density in region n: βn =

b0 + b1 log(density) + b1 log(density)2.

Next, κn,t measures the degree to which the personal interactions are reduced by the imple-

mented lock-down policies. The actual reduction in the personal interactions results from a combi-

nation of two factors: the official lock-down policies and their effectiveness in the particular region.

That effectiveness (from the perspective of the model) can capture at least two important factors.

The first factor is related to individuals’ compliance and the region’s enforcement of social dis-

tancing measures. The second factor is related to the fact that each social distancing measure (as

recorded in our data) comes with exceptions. Those exceptions may be different in different states,

or the same exception can have a different coverage in different states. In general, we should not

expect the same restriction that we code as a particular value of the r-score variable to have an

identical impact in each state. While we cannot speak to the reasons behind that heterogeneity,

we can incorporate it in a straightforward fashion into our model. In order to do that we model

κn,t as follows:

κn,t = (1− ξn) + ξn ·
5∑
i=0

κi · 1{i} (r-scoren,t)

where i is the value of the r-score variable (0 through 5), κi is the benchmark effect of restriction

i in the region where restrictions are most effective, ξn is the relative effectiveness of restrictions

in region n, and 1{i}(·) is a characteristic function of a singleton set with element i (essentially,

1{i} (r-scoren,t) equals 1 if r-scoren,t = i and 0 otherwise). We normalize ξn = 1 in one of the regions

(determined endogenously), and calibrate the 48 remaining values. We also normalize κ0 = 1 (i = 0

corresponds to no restrictions). We also impose a restriction that κi+1 ≤ κi, so a tighter restriction

would never lead to more contacts between people. Overall, this adds 48 + 5 = 53 additional

parameters to the calibration. We also consider a simpler specification where ξn = 1 in every

region n.
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Finally, ρ(n′, n) denotes the spillover parameter from state n′ to n. We restrict the possible

values for ρ(n′, n). First, we normalize ρ(n, n) = 1. Next, we set ρ(n′, n) = 0 when two states n′

and n are not adjacent and we require it to be positive (even if arbitrarily small) when they are.

In that case, we set ρ(n′, n) = ρ · 1∑
m 1{x∈R:x>0}(ρ(n′,m)) , where ρ > 0 will be the parameter to be

calibrated. In words, the spillover from state n′ to state n is divided by the total number states that

the state n′ is adjacent to. We do that in order to ensure that if Virginia and Maryland were one

state, the total spillover from DC would be the same as it is when they are two separate states.12

The full dynamics of the model are described by the following equations:

Sn,t+1 =Sn,t − Inewn,t (4.1)

In,t+1 = In,t − πR · In,t − πDIn,t + Inewn,t (4.2)

Rn,t+1 =Rn,t + πR · In,t (4.3)

Dn,t+1 =Dn,t + πD · In,t (4.4)

Popn,t+1 =Popn,t − πD · In,t (4.5)

where πR is the daily recovery rate and πD is the daily death rate. We set πR = 0.03267 and

πD = 0.00067, so that the model implies a 2% mortality and a 30-day duration of an average

infection.

4.2 Calibration, model Fit and Parameter Values

We calibrate the model by minimizing the sum of squared errors between the data and the model-

generated series of both the cumulative and the new confirmed cases per-capita in each region and

in the entire country. In the benchmark calibration our vector of parameters has 103 elements:13

θ := [ρ, β1, ..., β49, κ1, ..., κ5, ξ1, ..., ξ48]

12Allowing for ρ(n′, n) to have distinct value for each pair of states would yield 49× 24 = 1, 176 parameters to be
calibrated if we assume symmetric spillovers, and double that if we do not.

13The two alternative calibrations we consider have the following parameter vectors: (1) θ := [ρ, β1, ..., β49, κ1, ..., κ5]
when we assume that ξn = 1 in each region n, and (2) θ := [ρ, b0, b1, b2, κ1, ..., κ5] when we additionally assume that
βn = b0 + b1 log(density) + b1 log(density)2.
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In our calibration we assume that the confirmed cases per-capita in each state lag the infections by

14 days and we start our analysis on February 1, 2020 under the assumption that the cumulative

infections on that day corresponded to confirmed cases on February 14, 2020. Our two main

outcome variables are then defined as:

yn,t :=
In,t−7

Popn,0
and Yt :=

∑
n In,t−7∑
n Popn,0

, t = 15, 16, ...

The sum of squared errors between the model and the data is then calculated as:

SSE(θ) =
∑
n

(
T∑

t=15

(
ymn,t(θ)− ydn,t

)2
+

T∑
t=16

(
∆ymn,t(θ)−∆ydn,t

)2
)

+
T∑

t=15

(
Y m
t (θ)− Y d

t

)2
+

T∑
t=16

(
∆Y m

t (θ)−∆Y d
t

)2

The vector of calibrated parameters θ̂ is then given as

θ̂ := arg min
θ
SSE(θ)

The results of the calibration are reported in Table 4, which displays the overall fit of the model

as well as the values of selected parameters, except for the individual regions’ values of βn and

ξn. The latter are reported in the appendix. Here, we plot state-specific parameter values against

each region’s measure of population density in the two panels of Figure 9.14 The parameter values

by themselves do not mean much, so we defer their discussion to Section 4.3 where we perform

counterfactual simulations. There are two main takeaways here. First, the calibrated values of κ’s

are much smaller in our benchmark calibration (when we allow ξn to vary by state) than when we

assume identical, perfect effectiveness of each restriction (ξn = 1 for all n). This is not surprising at

all; higher values κ’s in the first two columns of Table 4 reflect the fact that in the average state the

effectiveness of that restriction measure is not perfect. Second, modeling βn as a fixed effect rather

than a simple polynomial function of the population density makes a huge difference in terms of

the model’s ability to account for the variation of Covid-19 cases across states.

14We compute the population density for each state as a population-weighted average of the density in each county.
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Figure 9: State-specific values of βn and ξn vs. log of population density
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Figure 10: Model Fit - all confirmed cases
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While it may not seem so, our model has relatively few free parameters (even with 49 state-

specific values of β and 48 state-specific values of ξ), because we have over 7,000 observations (49

regions over 150+ days). Despite that, the model does a remarkably good job in replicating the

data. Figure 10 plots the total number of confirmed cases observed in the data and generated by

the model for the whole country. The time paths of confirmed cases per-capita for individual states

and for DC are reported in the appendix. The R2 between the cumulative infections for the whole

country in model and in the data is 0.99. For individual states, the model accounts for 98% of the

overall variation in cumulative infections, for 97% of the variation within states, and 99% of the

variation between states. Naturally, the model does a poorer job in accounting for the dynamics

of the new infections. For the whole country, it accounts for the 73% of the variation in the data.

For individual states, it accounts for 40% of the total variation, 30% of the variation within states,

but for the 97% of the variation between states.

4.3 Counter-factual simulations

Given the overall good fit of the structural model, we proceed with using the model to perform two

counterfactual simulations. In all counterfactual simulations, we use our benchmark parametriza-
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Table 4: Model Fit and Parameter Values

Model specification βn = f(densityn); βn as fixed effects; ξn and βn
ξn = 1 ξn = 1 as fixed effects

Parameters

ρ 0.144 0.094 0.167
κ1 0.519 0.999 0.829
κ2 0.519 0.997 0.477
κ3 0.518 0.593 0.377
κ4 0.322 0.359 0.114
κ5 0.297 0.277 0.023
b0 -4.999 n.a. n.a.
b1 0.717 n.a. n.a.
b2 -0.029 n.a. n.a.

Model Fit - levels

country-wide 0.984 0.987 0.993
states - total 0.470 0.960 0.976
states - within 0.545 0.947 0.970
states - between 0.375 0.991 0.992

Model Fit - first differences

country-wide 0.574 0.580 0.725
states - total 0.131 0.301 0.395
states - within 0.107 0.207 0.303
states - between 0.291 0.919 0.968

Notes: f(density) ≡ b0 + b1 log(density) + b2 log(density)2.
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tion with state-specific values of βn and ξn. Naturally, any counterfactual simulation of a calibrated

or estimated model that does not explicitly model people’s behavior has to address the Lucas’ cri-

tique (Lucas, 1976). We want to point out that to some extent we already capture the differences

across states in behavioral response to restrictions by calibrating a state-specific parameter ξn.

While it captures more than that, it partially mitigates those concerns. Ideally, we would have ξn

vary by the level of imposed restriction, but we are not able to identify that with current data.

Given these considerations, our results should be interpreted as showing the impact of changes in

restrictions under the assumption that compliance with them remains the same as it was before

(i.e., not necessarily perfect).

Any counterfactual experiment is to some extent ad hoc. We present a few that we find the

most interesting and informative. First, we investigate what would happen if states increased their

maximum level of social distancing measures by 1 (of course, excluding the states where the max

of the r-score variable equals 5). Second, we investigate what would happen if the states adopted

their maximum level of social distancing 14 days earlier. Third, we investigate the role of the

spillover parameter, by simulating the path of infections when its value is 25% lower. Finally,

we combine the first with the last by simulating the impact of changing the restrictions in the

environment where the spillover parameter is smaller (of course, using the simulated series from

the third counterfactual as a benchmark).

The results of the counterfactual experiments are presented in Tables 5 and 6, and in Figures

11 through 14. In Figures 11-13 the first column indicates the impact on the whole country,

the second column indicates the impact on the group of states where the counterfactual policy is

implemented (“own effect”), and the third column indicates the impact on the group of remaining

states (“spillover effect”). These two groups may be different for different counterfactuals, and in

a few cases the second group is an empty set (so the spillover effect is not applicable). Tables

5 and 6 additionally separates these groups into two sub-columns - in each case the left sub-

column shows the simulated effect at the end of our data sample (June 28, 2020) and the right
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sub-column shows the simulated effect by December 31, 2021.15 In all simulations we assume that

social distancing measures which are in place on June 28, 2020, remain in place forever. One can

interpret the difference between them as showing the short-term vs. the long-term effects. Table 5

shows percentage change, and Table 6 shows the change in the actual numbers of people.

Table 5: % change in the number of confirmed cases (from the benchmark)

Counterfactual (states; action)

country-wide own effect spillover

short- long- short- long- short- long-
run run run run run run

r-score = 2; max add 1 -0.19 -0.26 -36.33 -32.46 -0.03 -0.04
r-score = 2; set max earlier -0.16 0.00 -25.21 -0.07 -0.04 0.00
r-score = 3; max add 1 -3.83 -5.49 -62.74 -51.64 -0.55 -0.98
r-score = 3; set max earlier -1.77 0.00 -26.26 -0.02 -0.41 0.00
r-score = 4; max add 1 -12.56 -21.56 -43.22 -52.35 -1.94 -4.20
r-score = 4; set max earlier -19.21 -0.26 -60.53 -0.60 -4.89 -0.07

r-score = 2,3,4; max add 1 -16.36 -27.43 -47.28 -53.80 -2.17 -5.32
r-score = 2,3,4; max add 1; (ρ ↓ by 25%) -13.03 -28.26 -44.29 -55.64 -1.11 -5.03
r-score = 5; max less 1 92.25 40.02 125.91 67.62 18.91 7.11
r-score = 5; set max earlier -69.35 -1.58 -84.60 -2.32 -36.13 -0.69

all; set max earlier -85.32 -1.89 -85.32 -1.89 n.a. n.a.
all; set max on 3/19/2020 -36.76 -0.55 -36.76 -0.55 n.a. n.a.
all; ρ ↓ by 25% -38.84 -6.45 -38.84 -6.45 n.a. n.a.

Notes: On 3/19/2020 California was the first state that raised its social distancing measures to the level
which corresponds to r-score = 5. “set max earlier” means that the state sets the r-score to the state’s
specific maximum value 14 days earlier than in the data. “max add 1” means that when the state’s r-score
reaches the maximum value, we increase that maximum value by 1 (for states where max(r-score) = 5
“max less 1” means that when such state’s r-score reaches maximum, it is set to 4). Short-run refers
to simulated outcomes on 6/28/2020. Long-run refers to simulated outcomes on 12/31/2021. In the
long-run simulations we assumed that restrictions in place on 6/28/2020, remain in effect until the end
of the simulation period.

Raising/lowering the max r-score by 1 The effects of increasing the maximum level of re-

strictions by 1 (or lowering it by 1 among states where max(r-score) = 5) are shown in rows 1, 3,

5, 7-9 of Tables 5 and 6 . The first thing we notice is that the own effect is an order of magnitude

larger than the spillover effect. Second, with the exception of the counterfactual in row 9 (most

restrictive states reduce their restrictions by 1), the spillover effect in the long-run is stronger than

15Naturally, the long-term effects should be interpreted more cautiously.
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Figure 11: Changing restrictions in the more lax states (benchmark = 1)
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Figure 12: Changing restrictions in the more restrictive states (benchmark = 1)
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Figure 13: Changing restrictions in all but most restrictive states (benchmark = 1)
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Figure 14: Lower spillovers, early restriction, and uniform timing (benchmark = 1)
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Table 6: change in the number of confirmed cases (from the benchmark) in thousands

Counterfactual (states; action)

country-wide own effect spillover

short- long- short- long- short- long-
run run run run run run

r-score = 2; max add 1 -5.1 -369.8 -4.4 -307.7 -0.7 -62.2
r-score = 2; set max earlier -4.0 -0.9 -3.0 -0.7 -1.0 -0.2
r-score = 3; max add 1 -99.6 -7,810.8 -86.0 -6,534.7 -13.7 -1,276.1
r-score = 3; set max earlier -46.0 -4.8 -36.0 -3.1 -10.0 -1.6
r-score = 4; max add 1 -327.0 -30,678.8 -289.5 -26,852.9 -37.5 -3,825.9
r-score = 4; set max earlier -500.1 -373.6 -405.5 -307.5 -94.6 -66.2

r-score = 2,3,4; max add 1 -425.9 -39,029.8 -387.2 -34,914.4 -38.7 -4,115.5
r-score = 2,3,4; max add 1; (ρ ↓ by 25%) -207.5 -37,609.2 -194.7 -33,983.2 -12.8 -3,626.0
r-score = 5; max less 1 2,401.7 56,940.0 2,246.8 52,325.5 154.9 4,614.5
r-score = 5; set max earlier -1,805.6 -2,244.7 -1,509.7 -1,794.4 -295.9 -450.3

all; set max earlier -2,221.3 -2,688.1 -2,221.3 -2,688.1 n.a. n.a.
all; set max on 3/19/2020 -957.1 -780.6 -957.1 -780.6 n.a. n.a.
all; ρ ↓ by 25% -1,011.2 -9,177.2 -1,011.2 -9,177.2 n.a. n.a.

Notes: See Table 5.

in the short-run. Third, even though the relative spillover effect is much smaller than the own

effect, it can be quite sizeable. Among states where the max(r-score) = 4, the spillover effect in the

long-run is -4.2%, and the combined spillover effect among states with max(r-score) < 5 is -2.2%

in the short-run and -5.3% in the long-run (in this case, the spillover effect is the impact on states

with max(r-score) = 5). While the percentages look small, as of 6/28/2020, the total number of

confirmed cases among states with max(r-score) = 5 was 1.7 mln, so 2.2% corresponds to 37,000

people. The -5.3% in the long-run corresponds to reducing the cumulative confirmed cases (in

states other those that raise their restrictions) by 4 million towards the end of December 2021.16

The short-term effects are depicted in Figures 11, 12, and 13.

Adopting max r-score earlier Similarly to changing the level of restrictions, earlier adoption

of the maximum level of restrictions matters most when done by states for which the maximum

r-score is 5. The difference is that now the short-term effect is much stronger than the long-term

effect. In the short-term, the own effect from early adoption for states with r-score = 5 is -84%,

16Long-run simulations in all scenarios assume that states keep their maximum level of restrictions until the end
of the simulation sample.
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and the spillover effect is -36%. In the long-term, those effects are drastically diminished, to -2.3%

and -0.7%, respectively. In other words, changing the timing of restrictions (without changing its

ultimate maximum level), operates largely by flattening the infection curve rather than by reducing

the total number of people that will eventually become infected. Among states that never reached

the r-score of 5, we observe a similar pattern, but its magnitude is smaller. The short-term effects

are depicted in Figures 11 and 12, and in the second panel of Figure 14.

Lower spillover The effect of reducing the value of the spillover parameter is shown in the top

panel of Figure 14 and in the bottom row of Tables 5 and 6. Not surprisingly, if spillovers across

states’ borders are smaller, the cumulative infections decline. Interestingly, the long-term effect is

disproportionately smaller (see Tables 5 and 6). In other words, if U.S. states had the ability to

restrict travel between them (akin to border closures between countries in the Schengen Zone), the

main epidemiological benefit would operate through the flattening of the infection curve.17 The

total number of confirmed cases in the long-run would still be smaller, but that decline would be

nowhere near as large as the decline in the short-term. Finally, when the spillover parameter is

smaller, the impact of changing the restrictions is diminished substantially in the short-run, but

only marginally in the long-run (see Figure 13 and rows 7 and 8 in Tables 5 and 6).

Fragmented by policies, united by outcomes Finally, Table 7 shows how changing a policy

within one group of states impacts that group as well as other groups. The key message from

the table is quite clear - policy changes implemented by subsets of states have quantitatively

significant effects on the rest of the country. In that sense, while a policy change may be local and

uncoordinated, its impact is felt across the whole country.

17Eckardt et al. (2020) show that border closures between European regions significantly slowed down the spread
of the virus.
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Table 7: Fraction of people infected by 12/31/2020 (median within subsets of states)

Subset of states

max(r-score) = 3 max(r-score) = 4 max(r-score) = 5

benchmark 0.61 0.38 0.33
r-score = 3: add 1 0.49 0.31 0.26
r-score = 4: add 1 0.42 0.17 0.28
r-score = 5: less 1 0.65 0.53 0.60
r-score = 2, 3, 4: add 1 0.30 0.12 0.22

5 Conclusion

In this paper we estimate the magnitude of inter-state diffusion of the Covid-19 infections. We find

evidence that new cases diffuse across county lines, and that the spatial diffusion across counties

is affected by the closure policies of adjacent states. Using a spatial version of the SIR model we

find that tightening restrictions in states with the less restrictive policies could have reduced the

infections in other states by more 2% in the first 3 months, and by more than 5% by the end of

December 2021, corresponding to a reduction in the number of confirmed cases by 40,000 and 4

million, respectively.

The stylized picture of spatial diffusion provides consistent evidence of the effect of surrounding

states’ policies on a particular county’s case load. The estimates from the spatial impulse response

functions suggest that spatial correlation is significant for up to ten days (following a “shock” to new

cases); while the estimates from traditional spatial models show the spatial correlation is significant

between counties, and the r-score of counties in adjacent counties have a significant effect on the

growth rate of a county’s new cases.

The presence of inter-state spillovers significantly affected the rate of increase in the number of

confirmed cases in the early stages of the outbreak. This result is important when we evaluate the

“performance” of different regions in battling the pandemic. A unique feature of the United States

is that its federal government cannot compel individual states to simply close their borders nor

mandate state-specific lock-down policies. This only emphasizes the importance of other tools that
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promote coordination between states’ authorities and regular citizens. First, uniform and consistent

messaging on precautionary measures such as masks, or encouraging the compliance with social

distancing restrictions and discouraging unnecessary inter-state travel are examples of such tools

that would impact individual behavior. Second, the evidence provided in the literature thus far

(Piguillem and Shi, 2020; Berger et al., 2020) suggests that there are potentially huge benefits

from implementing a country-wide testing system—aimed at reducing the delay between test and

result—thus revealing virus hot-spots much sooner to potential travelers. Finally, the literature on

fiscal federalism may offer some insights into the role the federal government can play when the

jurisdictional boundaries do not overlap with the boundaries of regions affected by local policies.18

Given that by the very nature of the problem any policy implemented or not implemented in

response to a viral outbreak creates external effects on surrounding regions, we believe this is a

very important area for further research.
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A States’ summary statistics and calibrated fixed effects

State βn ξn Density Cases per 1 mln max(r-score) GOP vote

AL 0.29 0.66 227.8 7250.8 5 0.63

AR 0.09 0.70 169.4 6339.5 3 0.61

AZ 0.10 0.44 319.3 10313.0 3 0.50

CA 0.21 0.47 1326.5 5484.6 5 0.34

CO 0.29 0.68 909.7 5739.1 5 0.44

CT 0.23 0.76 908.9 12890.1 4 0.41

DC 0.06 0.15 10275.8 14588.8 5 0.04

DE 0.09 0.65 742.1 11576.0 5 0.42

FL 0.54 0.80 795.9 6616.4 4 0.48

GA 0.41 0.82 1021.6 6694.3 4 0.51

IA 0.16 0.59 231.8 9034.4 4 0.52

ID 0.11 0.78 196.0 3049.8 5 0.60

IL 0.26 0.60 1681.7 11150.1 5 0.38

IN 0.23 0.63 641.7 6884.6 5 0.57

KS 0.29 0.99 456.7 4814.0 3 0.57

KY 0.15 0.75 561.7 3464.3 4 0.63

LA 0.31 0.70 382.4 12065.5 5 0.58

MA 0.26 0.72 1735.3 15702.4 4 0.33

MD 0.48 0.75 1698.8 11147.3 5 0.34

ME 0.28 0.61 121.8 2380.4 5 0.45

MI 0.36 0.72 940.1 6991.2 5 0.47

MN 0.28 0.68 966.2 6320.8 4 0.45

MO 0.16 0.75 812.6 3450.8 4 0.57

Continued on next page
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State βn ξn Density Cases per 1 mln max(r-score) GOP vote

MS 0.14 0.49 124.7 8671.9 5 0.59

MT 0.07 0.76 28.3 812.4 5 0.56

NC 0.35 0.62 621.6 5988.1 5 0.51

ND 0.11 0.74 43.6 4598.2 2 0.64

NE 0.27 0.94 639.1 9796.5 3 0.59

NH 0.12 0.59 301.1 4235.3 5 0.47

NJ 0.40 0.75 2978.5 19350.6 5 0.40

NM 0.22 0.75 211.6 5635.6 4 0.42

NV 0.15 0.66 222.0 5664.1 5 0.45

NY 0.41 0.77 11497.0 20330.0 5 0.35

OH 0.29 0.65 825.9 4303.8 5 0.52

OK 0.14 0.70 476.9 3282.7 4 0.65

OR 0.10 0.80 531.6 1992.0 4 0.41

PA 0.19 0.66 2050.2 7010.6 5 0.49

RI 0.19 0.69 1110.4 14134.9 4 0.40

SC 0.27 0.62 292.8 6553.7 4 0.55

SD 0.13 0.99 76.0 7697.7 2 0.61

TN 0.23 0.61 527.9 5900.3 5 0.61

TX 0.19 0.53 1245.4 5306.1 4 0.51

UT 0.22 0.84 680.8 6692.3 3 0.46

VA 0.44 0.76 1545.9 7560.2 5 0.45

VT 0.02 1.00 111.8 1909.6 5 0.33

WA 0.25 0.62 499.7 4424.5 5 0.39

WI 0.12 0.50 322.2 4791.7 5 0.48

Continued on next page
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State βn ξn Density Cases per 1 mln max(r-score) GOP vote

WV 0.11 0.92 160.8 1568.3 5 0.69

WY 0.04 0.67 12.4 2452.7 3 0.70
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B SIR model

This appendix shows the model fit for individual 49 contiguous regions (48 states + DC) from the

benchmark calibration of the model described in Section 4.
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Figure 15: Model (blue) vs. data (red) - individual states

48



0 50 100 150
0

0.02

IN

0 50 100 150
0

0.02

KS

model
data

0 50 100 150
0

0.02

KY

0 50 100 150
0

0.02

LA

0 50 100 150
0

0.02

MA

0 50 100 150
0

0.02

MD

0 50 100 150
0

0.02

ME

0 50 100 150
0

0.02

MI

0 50 100 150
0

0.02

MN

0 50 100 150
0

0.02

MO

0 50 100 150
0

0.02

MS

0 50 100 150
0

0.02

MT

Figure 16: Model (blue) vs. data (red) - individual states
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Figure 17: Model (blue) vs. data (red) - individual states
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Figure 18: Model (blue) vs. data (red) - individual states
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