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Abstract 
We analyze spatial diffusion of new Covid-19 cases and country-wide impact of state-specific 
containment policies during the early months of the Covid-19 pandemic in the United States. We first 
use spatial econometric techniques to document direct and indirect spillovers of new infections 
across county and state lines, as well as the impact of individual states' lock-down policies on 
infections in neighboring states. We find consistent statistical evidence that new cases diffuse across 
county lines, holding county level factors constant, and that the diffusion across counties was 
affected by the closure policies of adjacent states. We then develop a spatial version of the 
epidemiological SIR model where new infections arise from interactions between infected people in 
one state and susceptible people in the same or in neighboring states. We incorporate lock-down 
policies into our model and calibrate the model to match both the cumulative and the new infections 
across the 48 contiguous U.S. states and DC. Our results suggest that, had the states with the less 
restrictive social distancing measures tightened them by one level, the cumulative infections in other 
states would be about 5% smaller. In our spatial SIR model, the spatial containment policies such as 
border closures have a bigger impact on flattening the infection curve in the short-run than on the 
cumulative infections in the long-run.  
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1 Introduction

In this paper we assess the spatial diffusion of Covid-19 in the United States and the effect that

state-level lock-down policies have on that diffusion during the early months of the pandemic. Our

analysis is motivated by the idea that, if there were substantial spillovers of new infections between

states, then the uncoordinated responses at the state level may have exacerbated the initial outbreak

of the disease. But, the magnitude of those inter-region spillovers is uncertain, as is the extent to

which the relatively lax policies of one state contributed to new infections in surrounding states.

Indeed, as is now well-documented, the virus spread quickly throughout the United States, with

notable variations in state-level policy to follow. By March 6, a majority of U.S. states had at least

one confirmed case of the virus, and by March 17 the last state (West Virginia) reported its first

case. While the Center for Disease Control (CDC) and and other federal entities issued guidance on

appropriate measures to mitigate the spread of the virus, the final decisions regarding the timing

and the extent of restrictions were made by individual states, and sometimes even counties. The

first state-wide “shelter-in-place” order was issued in California on March 19, but ultimately only

24 additional states followed suit over the next two weeks. The compliance with social distancing

measures also varied greatly across regions (Painter and Qiu, 2020; Simonov et al., 2020). The goal

of this paper is to assess the impact of such a scattered policy response on the country-wide spread

of the virus, focusing on the early months of the pandemic.

Our analysis follows a two-pronged approach. First, we estimate spatial econometric models

to measure the extent of the spatial diffusion of new cases across regions in the United States.

For each model the dependent variable is the seven-day average growth rate of county-level cases,
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and our primary covariate is a measure of the number of restrictions put in place in the state in

which the county resides. The spatial econometric results provide useful descriptive insight into

the regional spread of the virus.

Second, we develop a spatial version of the standard epidemiological SIR (Susceptible-Infected-

Recovered) model based on Kermack and McKendrick (1927), which has been popularized in the

economics literature by Atkeson (2020b). In our model individuals can be infected by people from

their own states and from other states. Those inter-state contacts endogenously create a spatial

diffusion of the infections, with the speed of such diffusion depending on the model parameters

that measure the relative frequency of connections across state lines, potentially altered by social

distancing measures. We calibrate the model parameters by minimizing the distance between the

data and the model generated series. We then use the model to simulate the impact of lock-down

policies implemented in the states with the most restrictive and most lax policies.1 Our main results

in that section are twofold. First, if the individual states had the ability to restrict the travel across

their borders, infections would be smaller.2 Specifically, cutting the value of the calibrated inter-

state spillover parameter by 25% results in the reduction of country-wide infections by almost 40%

in the first 3 months, and by almost 7% in the long-run. Second, if the states with the more lenient

lock-down policies tightened them by one level, the cumulative cases in the remaining states would

be reduced by 2% in the first three months, and by more than 5% over the 21-month period.

Our analysis contributes to a large literature on the economics of Covid-19. First, we expand

the empirical literature that focuses on the spatial aspects of the outbreak. A few studies ana-

lyzed drivers of spatial heterogeneity in the scope or severity of the Covid-19 pandemic: Desmet
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and Wacziarg (2020) and Gerritse (2020) looked at US counties, Verwimp (2020) at Belgian mu-

nicipalities, and Ginsburgh et al. (2020) at French regions. Very few papers seemed to focus on

understanding the geographic spread of the infections. Kuchler et al. (2020) analyze the correlation

between the growth in new cases and the degree of social connectedness with the Covid hotspots,

using an aggregated data from Facebook. Cuñat and Zymek (2020) analyze geographical spread

of the virus in the U.K. by incorporating individual’s location and mobility decisions with the SIR

model. The most closely related studies are those that focus specifically on the spatial spillovers of

cases and cross-regional impact of local policies.3 Our paper has been probably the first attempt to

estimate the extent of spatial diffusion of Covid-19 in the United States during the early months of

the outbreak. Our main objective is to quantify the extent of inter-state spillovers and the impact

of one state’s containment measures on outcomes in surrounding states, with close attention paid

both to containment measures and possible non-compliance with them.

Second, our results are important for the discussion of policy coordination. It is quite well

known that in the presence of inter-state spillovers, an uncoordinated policy response may lead to

sub-optimal outcomes. This may be because restrictions are too lenient and the virus spreads to

other regions or countries (Beck and Wagner, 2020; Rothert, 2020, 2021). It may also be because

the restrictions are too harsh, and the recession engineered in one region or industry spills over

to other regions or industries (Crucini and O’Flaherty, 2020; Acharya et al., 2020). Our paper is

important in the sense that it offers empirical insights into the actual magnitude of inter-regional

epidemiological spillovers in the United States. Our findings suggest that those spillovers are

substantial and therefore emphasize the importance of a coordinated policy response.
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Third, the variation in state-level restrictions plays a key role in our analysis. This associates

us with a number of papers that focus on the effectiveness of various social distancing measures

or on the compliance with the official rules.4 Painter and Qiu (2020) and Simonov et al. (2020)

show that compliance with social distancing rules in the U.S. is correlated with party affiliation,

and with exposure to certain opinion-forming programs on Fox News. Briscese et al. (2020) show

that the compliance can vary over time and that people can become “tired of” restrictions. In our

analysis we use a measure of state-imposed restrictions and we also allow for imperfect compliance

with them. Our results indicate that stricter social distancing measures introduced by individual

states, and better compliance with them, limit the spread of the disease not only within those

states, but also in the neighboring states. Conversely, the lack of such restrictions makes it harder

for the state’s neighbors to contain the virus.

Finally, following Atkeson (2020b), a number of papers have contributed to modelling the spread

of the pandemic. The SIR model has become the standard in that literature with different papers

suggesting different modifications, depending on the paper’s focus.5 The closest papers to ours are

Bisin and Moro (2020) and Acemoglu et al. (2020). The former builds a theoretical framework

that formalizes aspects such as local travel and changes in individuals’ behavior, but their focus

is on the local diffusion around the hot-spot of the outbreak. The latter develops a multi-group

version of the SIR model where infection risks differ across population groups (e.g., nursing homes,

schools, etc.) and allows for the transmission of infections between population subgroups. Our

main contribution is to develop a spatial version of the benchmark SIR model that allows us to

quantify the spillover effects of local infections as well as local lock-down policies on the spread of
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the virus in other parts of the country.

2 Covid-19 outbreaks and policy responses across the U.S.

We start by documenting some stylized facts about the time and spatial dimensions of the spread

of Covid-19 and containment measures in the United States.

2.1 Data

We utilize three data sources in this paper:

1. Daily county-level data on confirmed cases and deaths are from the Covid-19 Data Repository

by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (Dong

et al. (2020)).

2. Daily state-level data on business closures and mandated social distancing measures are

from the Institute for Health Metrics and Evaluation (IHME). Specifically, we utilize IHME-

compiled information on five such metrics including the date on which a state proceeded

as follows: forbade mass gatherings, introduced an initial round of business closures, closed

schools, closed all non-essential businesses, and adopted a stay-at-home order.6 For each

day in our time series, we sum the number of currently-imposed restrictions within a state

to generate a measure of government-imposed behavior restrictions at the state level. This

metric is thus a count variable taking values 0 through 5, which we call r-score.

3. County-level data on socioeconomic, demographic, and geographic characteristics from the

Bureau of Economic Analysis (BEA). In the analysis below we incorporate county-level infor-

mation on population density for the year 2018 (BEA and U.S. Census Bureau), the share of
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the county-level population over age 60 for the year 2018 (U.S. Census Bureau), and partisan

voting share from the 2016 presidential election.7

2.2 Covid-19 cases across time and space

In this section we conduct some basic visual analysis to demonstrate the extent of the Covid-19

epidemic in the United States. We do so to provide a descriptive look at the dynamics of the

inter-state and inter-county spillover of the virus.

Figure 1 displays the spread of Covid-19 across the whole country over time. The solid line

plots the proportion of counties with confirmed cases over time, demonstrating the breadth of the

epidemic. The dotted line reveals its depth, displaying how the share of the population living in a

county with at least one confirmed case quickly rose from close to zero to close to one during the

month of March. It is clear that from March through June, Covid-19 transitioned from a fairly

sparse outbreak to a widespread epidemic among counties along both the extensive and intensive

margins.

New York was the first state in the U.S. to experience a very significant outbreak, with its

epicenter in New York City (NYC). A simple inspection of the dynamics of case numbers in and

around NYC is suggestive of the presence of interstate spillovers (within the CT-NJ-NY-PA areas).

Figure 2 shows a rapid expansion of per-capita case numbers in New York during the second half

of March, followed by all other states surrounding the NYC metropolitan area in late March and

the first half of April. In the case of New Jersey, per-capita case counts caught up to—and began

to outpace—those of New York in mid-April.

Closer inspection at the county level in other metropolitan areas reveals similar patterns. Figure
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Figure 1: Affected Counties and Population Over Time
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Figure 2: Cases in New York and Surrounding States
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Figure 3: County-level Cases in Major Metropolitan Areas
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3 plots confirmed county-level cases per-capita over time for four particular metropolitan areas:

Chicago, IL (top left); Houston, TX (top right); Miami, FL (bottom left); New Orleans, LA

(bottom right). In each case, the county containing the urban center appears to trigger the area

outbreak (respectively: Cook County, IL; Harris County, TX;8 Miami-Dade County, FL; Orleans

Parish, LA). In the case of Chicago, which lies on the Illinois-Indiana border, the spillover appears

to extend to Lake County, IN. Together, these figures provide preliminary evidence of transmission

dynamics in which Covid-19 cases emanate from major urban centers into the surrounding areas,

and across state lines.
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Figure 4: Containment Measures Over Time
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2.3 Containment measures across time and space

There is also clear evidence that during the initial shutdown of March and April, government-led

containment measures varied geographically and over time. Figure 4 displays the transition from

no official containment measures (early March) to universal adoption (of at least some measures)

by all states by early April. The most action occurred between mid-March and early April. 60% of

the U.S. population lived in a state with no containment measures on March 15; however, by April

1 nearly 60% of the population lived in a state that had adopted all five factors described by our

r-score variable.

In the sections below, our spatial-econometric analysis and our spatial model and calibration
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Figure 5: R-scores by State and Time
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exercise seek to understand further the geographical spillovers across county and state lines. It is

important that there was sufficient geographic variation in the early weeks of the pandemic. Figure

5 shows r-scores in each state from four snapshots spanning mid-March through early April. While

it is clear that there are regional trends, most importantly we see that many states have neighbors

with different r-scores and those relative differences change over time.

To drill down on the variation in containment measures even further, for spillover effects to

be meaningful and identifiable, there must be substantial variation in government-led Covid-19

responses, specifically near state borders. Figure 6 displays the share of the U.S. population living

in a county with a different level of containment measures (i.e., r-score value) than at least one of

its five nearest counties, over time. During the containment action period of mid-March through
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Figure 6: Share of U.S. Population Living in a County with Different Containment Measures than
its Five Nearest Counties
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early April, this share quickly rose to about 23% of the population, fluctuated between 15% and

23% for the next two weeks, and then settled at 15% for the remainder of April.

3 Estimating the Spatial Diffusion of Cases

In this section we estimate the spatial characteristics of cases. To do so, we estimate the spillovers

of cases from county to county in the United States using oft-used spatial econometric models. In

this section, the variable new cases is measured as the seven-day average of the growth rate of new

cases.
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3.1 Estimation of Spatial Correlation

We estimate the following standard spatial models: the Spatial Durbin Model (SDM), the SDM

model with spatially correlated errors (SDM Error), the SAR Model, and the SLX model. We start

with SDM which, in a panel setting, can be written as:

Yt = ρWYt + βXt + θWXt + δ + εt,

where Yt = Y1,t, ..., YN,t is a NT×1 vector of the dependent variable; WYt is the spatial lag term; Xt

is an NT × r matrix of r exogenous variables; δ = δ1, ..., δN is the vector of region-fixed effects; and

WXt is the spatial lag term for the exogenous variables, which here we refer to as the “exogenous

spatial interaction” term (to distinguish this from the spatial lag variable).9 The spatial term WYt

captures the direct effect of the spatial correlation in determining the dependent variable (capturing

what otherwise might be an omitted variable). The SDM error model amends the typical SDM

to include a spatially correlated error. The SAR model imposes a restriction that θ = 0, and the

SLX model imposes a restriction that ρ = 0. In all cases, we employ a contiguity matrix (row-

normalized) since this version of the spatial-weighting matrix is the most common in the spatial

literature though we considered other versions for robustness (such as an inverse-distance-based

matrix), but do not report those results here for brevity.

For the models above, Yt is the county level cases, and Xt is the r-score. We include a county-

level fixed effect to control for county-level features such as population density, relative industry,

employment shares, and so on (variables which, given the data sources and time period covered,

are fixed over the time period). We report the baseline spatial results for each model, along with

the direct and indirect spatial effects. We also consider additional specifications, including with
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the r-score lagged 14 days, and with the lag of the dependent variable included as a regressor.

Table 1: Baseline results for Spatial Models of New Cases (measured as a growth rate)

SAR SAR SLX SLX SDM SDM SDM Error SDM Error

r-score -2.299*** 0.816** -0.33 -0.283

(0.067) (0.32) (0.27) (0.243)

r-score 14 day lag -2.189*** 0.911*** -0.174 -0.0419

(0.0527) (0.249) (0.212) (0.189)

W × cases 0.584*** 0.580*** 0.584*** 0.578*** 0.865*** 0.862***

(0.00188) (0.00189) (0.00188) (0.00190) (0.00131) (0.00134)

W × r-score -6.766*** -2.150*** -0.545**

(0.34) (0.29) (0.25)

W × (r-score 14 day lag) -6.577*** -2.200*** -0.757***

(0.26) (0.22) (0.20)

W × error -0.756*** -0.753***

(0.00) (0.00)

N 279549 279549 279549 279549 279549 279549 279549 279549

Notes: Spatial models estimated from April 1 through June 28, controlling for county-level fixed effects. Dynamic refers to the

lag of the dependent variable included in the model. 14 day lag of r-score is the value from 14 days prior. The Wald test for

spatial correlation is statistically significant in all models. Standard errors are in parentheses. * p < .1, ** p < .05, *** p < .01.
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Tables 1 and 2 report the results for the four models. Table 2 displays results with a lag of the

dependent variable included in each model; we refer to this as the dynamic version.10 We report

baseline results shown in Tables 1 and 2 for purposes of comparison with “traditional” approaches

to spatial estimation, of which these models represent. Across the model versions, the most robust

result is that the coefficient on the spatial lag (new cases interacted with the spatial weighting

matrix) is statistically significant. The effect of the r-score depends on the model. Only in the SAR

model is the r-score negative and statistically significant. The interaction of the r-score with the

spatial weighting matrix is statistically significant and negative in the SLX, SDM, and SDM error

models.

In addition to the models shown in the tables referenced above, we included time-fixed effects in

each model (in addition to the county-level effects). Chung and Hewing (2015) note that omitted

common shocks may bias estimates of spatial correlation. With time-fixed effects included in each

model, the spatial lag is still statistically significant, suggesting the spatial correlation of new cases

is robust to including both county and time-fixed effects. However, neither the results for the r-

score, nor the results for the r-score interacted with the spatial weighting matrix, are robust to the

inclusion of time fixed effects.11

Overall, the spatial econometric models provide a general picture of the spatial correlation of

the virus. The clearest evidence of the spatial spillover is via the statistical significance of the

coefficient on the spatial lag in each model. To further understand the spatial characteristics of the

growth rate of new cases across counties, we consider a SIR model.
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4 Spatial SIR and Counterfactual Experiments

The previous sections provide evidence of a substantial degree of inter-state spillovers of Covid-19

across regions. In this section, motivated by that evidence, we construct and calibrate a structural

SIR model, similar to the one described in Atkeson (2020b), Eichenbaum et al. (2020), Glover et al.

(2020), or Fernández-Villaverde and Jones (2020), but with a few modifications. Most importantly,

the model allows for infections across state boundaries. We then use the model to evaluate the

extent to which the presence of such spillovers contributed to the spread of the infections in the U.S.

We also evaluate how lock-down policies implemented in one state impact the rest of the country.

To the extent possible, we try to account for important real-life features, such as the impact

of changes in social distancing measures and the state-specific effectiveness of those. Additionally,

as pointed out by Fernández-Villaverde and Jones (2020), the identification of parameters in the

compartmental models such as the SIR model can be challenging (this is mostly discussed by

Atkeson (2020a) in the context of estimating the fatality rate, which is not the central point of our

analysis). We partially address this last issue by gradually increasing the complexity of the model

and exploring how that increased complexity affects different parts of the model fit. We believe

our analysis can still provide useful insights into both the nature and the potential magnitude of

inter-state spillovers during the early stages of the outbreak.

While the previous section estimated a spatial model of a daily panel of 3000+ counties, in this

section we will consider a state-level version of the SIR model. The reason is that with 3000+ cross-

sectional units, the calibration of the highly non-linear SIR model would become computationally

infeasible.
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4.1 The model

The model is an extension of the SIR model that allows us to account for the spatial diffusion

of infections. We specify the model in discrete, rather than continuous time. In each period t,

the initial population of region n is divided into four disjoint sets: Susceptible (S), Infected (I),

Recovered (R), and Dead (D):

Popn,0 = Sn,t + In,t +Rn,t +Dn,t

and population at time t is: Popn,t = Sn,t + In,t + Rn,t. The new infections in state n result from

interactions between susceptible people Sn in that state, with infected people in potentially all

other states In′ , where n′ = 1, ..., N . The new infections in state n at time t are given by:

Inewn,t =
Sn,t
Popn,t

·
∑
n′

ρ(n′, n) ·
√
βnβn′ · √κn,tκn′,t · In′,t

In the expression above, the whole term ρ(n′, n) ·
√
βnβn′ · √κn,tκn′,t describes the average number

of close contacts that a person from state n has with a person from state n′ in day t. The close

contact is defined as one that would result in a transmission of a virus from an infected person to

a healthy person. The new infections in state n then occur when an infected person from state n′

— In′,t — comes in a close contact with a susceptible person from state n. The probability that a

person we come in a close contact with is susceptible is
Sn,t

Popn,t
.

The parameter βn measures the average number of distinct inter-personal contacts that any

person in state n has on a regular day. We allow this parameter to vary across states, given the

substantial heterogeneity in the fraction of people living in densely populated areas. We expect,

of course, that a typical person in New York will have more distinct inter-personal contacts than
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a person living in Montana. We assume βn is constant over time. It is certainly possible that the

typical number of inter-personal contacts will vary over time in each state, and it is quite likely that

this variation will differ by state (for example, the value of β would likely plummet during the Spring

Break in college towns but skyrocket in the nightclubs or bars in Florida). Given how specific this

time variation would be to individual states, we have decided to assume it away, and only allow the

model to have a cross-sectional variation in β, which yields 49 parameters to be calibrated. We also

consider a simpler specification, with three rather than 49 parameters, where βn is a polynomial

function of the population density in region n: βn = b0 + b1 log(density) + b1 log(density)2.

Next, κn,t measures the degree to which the personal interactions are reduced by the imple-

mented lock-down policies. The actual reduction in the personal interactions results from a combi-

nation of two factors: the official lock-down policies and their effectiveness in the particular region.

That effectiveness (from the perspective of the model) can capture at least two important factors.

The first factor is related to individuals’ compliance and the region’s enforcement of social dis-

tancing measures. The second factor is related to the fact that each social distancing measure (as

recorded in our data) comes with exceptions. Those exceptions may be different in different states,

or the same exception can have a different coverage in different states. In general, we should not

expect the same restriction that we code as a particular value of the r-score variable to have an

identical impact in each state. While we cannot speak to the reasons behind that heterogeneity,

we can incorporate it in a straightforward fashion into our model. In order to do that we model

κn,t as follows:

κn,t = (1− ξn) + ξn ·
5∑
i=0

κi · 1{i} (r-scoren,t)
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where i is the value of the r-score variable (0 through 5), κi is the benchmark effect of restriction

i in the region where restrictions are most effective, ξn is the relative effectiveness of restrictions

in region n, and 1{i}(·) is a characteristic function of a singleton set with element i (essentially,

1{i} (r-scoren,t) equals 1 if r-scoren,t = i and 0 otherwise). When ξn = 1, the effectiveness of

each restriction in state n is as high as it can be, when ξn = 0 the restrictions are completely

ineffective. We normalize ξn = 1 in one of the regions (determined endogenously - see Appendix

B.1 for details) and calibrate the 48 remaining values. We also normalize κ0 = 1 (i = 0 corresponds

to no restrictions). We also impose a restriction that κi+1 ≤ κi, so a tighter restriction would never

lead to more contacts between people. Overall, this adds 48 + 5 = 53 additional parameters to the

calibration.

Finally, ρ(n′, n) denotes the spillover parameter from state n′ to n. We restrict the possible

values for ρ(n′, n) so that the matrix is consistent with the row-normalized weighing matrix used

in Section 3. First, we normalize ρ(n, n) = 1. Next, we set ρ(n′, n) = 0 when two states n′ and n

are not adjacent and we require it to be positive (even if arbitrarily small) when they are. In that

case, we set ρ(n′, n) = ρ · 1∑
m 1{x∈R:x>0}(ρ(n′,m)) , where ρ > 0 will be the parameter to be calibrated.

In words, the spillover from state n′ to state n is divided by the total number states that the state

n′ is adjacent to. We do that in order to ensure that if Virginia and Maryland were one state, the

total spillover from DC would be the same as it is when they are two separate states.12
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The full dynamics of the model are described by the following equations:

Sn,t+1 =Sn,t − Inewn,t (4.1)

In,t+1 = In,t − πR · In,t − πDIn,t + Inewn,t (4.2)

Rn,t+1 =Rn,t + πR · In,t (4.3)

Dn,t+1 =Dn,t + πD · In,t (4.4)

Popn,t+1 =Popn,t − πD · In,t (4.5)

where πR is the daily recovery rate and πD is the daily death rate. We set πR = 0.03267 and

πD = 0.00067, so that the model implies a 2% mortality and a 30-day duration of an average

infection.

4.2 Calibration, model fit and parameter values

We calibrate the model by minimizing the sum of squared errors between the data and the model-

generated series of both the cumulative and the new confirmed cases per-capita in each region and

in the entire country. Our vector of parameters has 103 elements:

θ := [ρ, β1, ..., β49, κ1, ..., κ5, ξ1, ..., ξ48]

In our calibration we assume that the confirmed cases per-capita in each state lag the infections by

14 days and we start our analysis on February 1, 2020 under the assumption that the cumulative

infections on that day corresponded to confirmed cases on February 14, 2020. Our two main

outcome variables are then defined as:

yn,t :=
In,t−7

Popn,0
and Yt :=

∑
n In,t−7∑
n Popn,0

, t = 15, 16, ...
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The sum of squared errors between the model and the data is then calculated as:

SSE(θ) =
∑
n

(
T∑

t=15

(
ymn,t(θ)− ydn,t

)2
+

T∑
t=16

(
∆ymn,t(θ)−∆ydn,t

)2
)

+

T∑
t=15

(
Y m
t (θ)− Y d

t

)2
+

T∑
t=16

(
∆Y m

t (θ)−∆Y d
t

)2

The vector of calibrated parameters θ̂ is then given as

θ̂ := arg min
θ
SSE(θ)

The results of the calibration are reported in Table 3, which displays the overall fit of the model

as well as the values of selected parameters, except for the individual regions’ values of βn and ξn.

The latter are reported in the appendix. In the appendix we also present summary of the results

from calibrations that use different time windows: starting two and four weeks later (on February

14th and March 1st), or ending two weeks earlier (on June 14th). The calibrated values are not

overly sensitive to those modifications.

The progression of the model fit reported in the bottom half of Table 3 helps explain how the

parameters are identified. We start our calibration by assuming that (1) βn = b0 + b1 · densityn +

b1 · density2
n, (2) κi = 1 for all i, (3) ξn = 1 for all n (r-score changes make no difference in any

state). We then proceed by relaxing one restriction at a time.

First, we relax the assumption that κi = 1 for all i (but we still assume that ξn = 1 for all n

and that βn is a quadratic function of the population density). There is a dramatic improvement

in the model fit along all dimensions, most notably in country-wide levels (R2 doubles) and first

differences (R2 almost triples). This is because the initial growth of infections (country-wide and

across states) is being slowed down by the imposition of restrictions. A model without some
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variation in the frequency of close contacts over time cannot capture that change in the dynamics

of new infections.

Second, we relax the assumption that βn is a quadratic function of the population density

in state n and instead model it as a state fixed effect. Not surprisingly, the model fit improves

dramatically along one important dimension: the variation in levels of infections across states. The

model can now account for 96% of that variation (95% of the variation within and 99% between

states). There is also a huge improvement in the model’s ability to account for the between states

variation in the growth rate of new infections (the R2 more than triples, from 0.29 to 0.93).

Finally, we let ξn differ by state (normalizing its highest value to 1). The main improvement

in the model’s fit can be seen in the variation of new infections over time – both country-wide and

across states. Intuitively, the model picks up the difference between states that had the same change

in their r-score in the data, but experienced a different reduction in the growth rate of infections.

It is worth pointing out that the calibrated values of κ’s are much smaller when we allow ξn to vary

by state, than when we assume identical, perfect effectiveness of each restriction (ξn = 1 for all n).

This is not surprising at all; higher values κ’s in columns two and three of Table 3 reflect the fact

that in the average state the effectiveness of that restriction measure is not perfect.

While it may not seem so, our model has relatively few free parameters (even with 49 state-

specific values of β and 48 state-specific values of ξ), because we have over 7,000 observations (49

regions over 150+ days). Despite that, the model does a remarkably good job in replicating the

data. Figure 7 plots the total number of confirmed cases observed in the data and generated by

the model for the whole country. The time paths of confirmed cases per-capita for individual states
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Figure 7: Model Fit - all confirmed cases
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and for DC are reported in the appendix. The R2 between the cumulative infections for the whole

country in model and in the data is 0.99. For individual states, the model accounts for 98% of the

overall variation in cumulative infections, for 97% of the variation within states, and 99% of the

variation between states. Naturally, the model does a poorer job in accounting for the dynamics

of the new infections. For the whole country, it accounts for the 73% of the variation in the data.

For individual states, it accounts for 40% of the total variation, 30% of the variation within states,

but for the 97% of the variation between states.

4.3 Counter-factual simulations

Given the overall good fit of the structural model, we proceed with using the model to perform coun-

terfactual simulations. In all counterfactual simulations, we use our benchmark parametrization

with state-specific values of βn and ξn. Naturally, any counterfactual simulation of a calibrated or

estimated model that does not explicitly model people’s behavior has to address the Lucas’ critique
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Table 3: Model Fit and Parameter Values

Model specification βn = f(density); βn = f(density); βn as fixed effects; ξn and βn

κn = ξn = 1 ξn = 1 ξn = 1 as fixed effects

Parameters

ρ 0.136 0.144 0.098 0.156

κ1 1.000 0.519 0.999 0.640

κ2 1.000 0.519 0.998 0.427

κ3 1.000 0.518 0.534 0.185

κ4 1.000 0.322 0.315 0.055

κ5 1.000 0.297 0.231 0.026

b0 -4.995 -4.999 n.a. n.a.

b1 0.591 0.717 n.a. n.a.

b2 -0.028 -0.029 n.a. n.a.

Model Fit - levels

country-wide 0.466 0.984 0.991 0.994

states - total 0.163 0.470 0.962 0.978

states - within 0.170 0.545 0.951 0.972

states - between 0.197 0.375 0.990 0.993

Model Fit - first differences

country-wide 0.203 0.574 0.612 0.731

states - total 0.001 0.131 0.313 0.403

states - within 0.000 0.107 0.220 0.312

states - between 0.176 0.291 0.925 0.970

Notes: Each column corresponds to calibration results from a different model specification. We start with the first column

assuming that βn = b0 + b1densityn + b2density2
n, κi = 1 for each value i of the r-score, and ξn = 1 for each n. We then

gradually ease each restriction to allow κ to vary across r-scores, and βn and ξn be modelled as state-specific fixed parameters.
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(Lucas, 1976). We want to point out that to some extent we already capture the differences across

states in behavioral response to restrictions by calibrating a state-specific parameter ξn. Ideally, we

would have ξn vary by the level of imposed restriction, but we are not able to identify that given

our data. Given these considerations, our results should be interpreted as showing the impact of

changes in restrictions under the assumption that compliance with them remains the same as it

was before (i.e., not necessarily perfect).

Any counterfactual experiment is to some extent ad hoc. We present three that, given the focus

of our paper, we find the most interesting and informative. First, we investigate what would happen

if states changed the maximum level of r-score they implemented by one. Figure 8 plots how that

counter-factual experiment is conducted. On the day when the r-score in each state reaches its

maximum observed level in the data, we increase that level by one among states that chose not to

impose the most aggressive policies corresponding to r-score = 5 (there are 22 of such states). That

way, we are able to get a sense of the epidemiological13 “damage” caused by more lenient policies in

such states, both within that group of states, and outside of it. Conversely, among states in which

the maximum r-score in the data equals five, we reduce that level by one. That way, we are able to

get a sense of the epidemiological “benefit” delivered by the most aggressive policies (within that

group of states, and outside of it).

Second, we investigate the role of the spillover parameter, by reducing it by 25%. Third,

we combine the two: We repeat the first counterfactual under the assumption that the spillover

parameter is 25% lower (of course, we use the simulated series with that lower value of ρ as a

benchmark). In all experiments we assume that social distancing measures which are in place on
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Figure 8: Counter-factual paths of r-scores
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Notes: Each panel plots the actual (data) and counter-factual paths of r-scores in the experiment that we consider:

modifying the maximum value of r-score by one. The states are (from top-left, clockwise): South Dakota, Arizona,

California, and Florida.

June 28, 2020, remain in place forever.

Table 4 presents the results from counterfactual experiments. We report both percentage as

well as absolute changes relative to the benchmark for both total cases (in thousands) and deaths.

We first divide all states into four distinct groups, based on the maximum level that the r-score

reached in the data. The results are reported in rows 1 through 4. We then combine the states

where r-score never reached five into a single group that we will call “lax states”. We do that

because of the large discrepancy between the number of states within each four groups (there are
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twenty seven states where r-score reached 5 and only two states where it reached the maximum

value of 2). That way, we split the whole country into two groups, somewhat similar in size. The

results for that group are reported in row 5. Next, in row 6 we show the effect of reducing the value

of the spillover parameter by 25%. Finally, in row 7, we show the effect of increasing r-score by

1 under the lower spillover parameter. We consider both short-run effects (on June 28, 2020) and

long-run effects (December 31, 2021). The first two columns report country-wide effects, columns

three and four report own effects (within each group), columns five and six report spillover effects

(outside each group).

Raising/lowering the max r-score by 1 Consider first the effects of increasing the maximum

level of restrictions by 1 (or lowering it by 1 among states where max(r-score) = 5). They are

reported in rows one through five in Table 4. The first thing we notice is that the own effect is an

order of magnitude larger than the spillover effect. Second, the spillover effect in the long-run is

stronger than in the short-run. Third, even though the relative spillover effect is much smaller than

the own effect, it can be quite sizeable. For example, the combined spillover effect among states

with max(r-score) < 5 (i.e., the impact on states with max(r-score) = 5) is -2.2% in the short-run

and -5.5% in the long-run. While the percentages look small, the total number of confirmed cases

among states with max(r-score) = 5 on 6/28/2020 was 1.7 mln, so a 2.2% change means to 39,000

fewer people infected and 790 fewer dead. The -5.5% in the long-run corresponds to reducing the

cumulative confirmed cases by more than 4 million, and reducing deaths by over 84 thousands

towards the end of December 2021. Even the spillover effect from the two least restrictive states

(South Dakota and North Dakota) is not trivial: raising max r-score from 2 to 3 means saving more
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Table 4: Counterfactual simulations - changes relative to the benchmark

% changes

Counterfactual (states; action)

country-wide own effect spillover

short- long- short- long- short- long-
run run run run run run

rscore = 2; add 1 -0.14 -0.18 -24.25 -19.72 -0.02 -0.04
rscore = 3; add 1 -3.85 -5.71 -62.06 -51.39 -0.60 -1.14
rscore = 4; add 1 -11.39 -19.91 -38.79 -47.92 -1.93 -4.16

rscore = 5; less 1 73.21 36.29 98.99 61.11 16.91 6.89
rscore = 2,3,4; add 1 -15.17 -25.87 -43.48 -49.97 -2.21 -5.52

all; ρ ↓ by 25% -40.10 -7.17 -40.10 -7.17 n.a n.a
rscore = 2,3,4; add 1; (ρ ↓ by 25%) -11.81 -26.83 -40.47 -51.95 -1.10 -5.32

∆ cases (000s)

Counterfactual (states; action)

country-wide own effect spillover

short- long- short- long- short- long-
run run run run run run

rscore = 2; add 1 -3.5 -248.8 -2.9 -186.9 -0.6 -61.9
rscore = 3; add 1 -100.3 -8,065.7 -85.4 -6,608.5 -14.9 -1,457.1
rscore = 4; add 1 -296.5 -28,104.0 -259.1 -24,346.9 -37.4 -3,757.0

rscore = 5; less 1 1,906.2 51,236.8 1,767.9 46,787.9 138.2 4,448.9
rscore = 2,3,4; add 1 -395.0 -36,516.8 -355.5 -32,289.4 -39.5 -4,227.4

all; ρ ↓ by 25% -1,044.0 -10,121.5 -1,044.0 -10,121.5 n.a n.a
rscore = 2,3,4; add 1; (ρ ↓ by 25%) -184.2 -35,160.2 -171.8 -31,401.2 -12.4 -3,759.0

∆ deaths

Counterfactual (states; action)

country-wide own effect spillover

short- long- short- long- short- long-
run run run run run run

rscore = 2; add 1 -70 -4,976 -58 -3,739 -13 -1,237
rscore = 3; add 1 -2,006 -161,314 -1,708 -132,171 -298 -29,143
rscore = 4; add 1 -5,930 -562,079 -5,182 -486,939 -748 -75,140

rscore = 5; less 1 38,124 1,024,737 35,359 935,758 2,765 88,978
rscore = 2,3,4; add 1 -7,900 -730,335 -7,110 -645,787 -790 -84,548

all; ρ ↓ by 25% -20,881 -202,429 -20,881 -202,429 n.a. n.a.
rscore = 2,3,4; add 1; (ρ ↓ by 25%) -3,685 -703,205 -3,436 -628,024 -249 -75,180

Notes: the first column lists the group of states in which the experiment takes place, followed by the description of
the experiment. For example, “rscore = i; add 1” means that we only take states in which max score in the data
is i = 2, 3, 4, and we increase that max r-score by one (as illustrated in Figure 8), keeping the paths in other states
at their benchmark (i.e., taking the empirical path). “Own effect” refers to the effect within the group of states
considered, and “spillover” to the effects in all other states. All changes relative to the benchmark paths of infections
and deaths. Short-run: all series cut on June 28, 2020; long-run: all series simulated up to December 31, 2021.
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than 1,200 lives in other parts of the country.

Lower spillover The effect of reducing the value of the spillover parameter is presented in row

six in each part of the table. Not surprisingly, if spillovers across states’ borders are smaller, the

total number of infections and deaths is smaller. Interestingly, the percentage difference is larger

in the short-run that in the long-run. In other words, if U.S. states had the ability to restrict

travel between them (akin to border closures between countries in the Schengen Zone), the main

epidemiological benefit would operate through the flattening of the infection curve.14

Changing r-score with lower spillover Finally, we consider the country-wide and the spillover

effects of changing local restrictions, when the spillover parameter is smaller. The results are

reported in row seven in each part of the table (for ease of exposition, we only report the results for

a subset of states). Our results indicate that when the spillover parameter is smaller, the impact

of changing the restrictions is diminished substantially in the short-run, but only marginally in the

long-run. In the short-run, the percentage spillover effect or raising restrictions in the lax states

changes from -2.2% to -1.1%. In the long-run that change is much smaller: from -5.5% to -5.3% (we

do no compare absolute changes between rows five and seven, because they correspond to different

benchmarks).

5 Conclusion

In this paper we estimate the magnitude of inter-region diffusion of the Covid-19 infections in the

early months of the pandemic in the United States. We find evidence that new cases diffuse across

county lines, and that the spatial diffusion across counties is affected by the closure policies of
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adjacent states. Using a spatial version of the SIR model we find that tightening restrictions in

states with the less restrictive policies could have reduced the infections in other states by more

2% in the first 3 months, corresponding to a reduction in the number of confirmed cases by 40,000.

Also, estimates from traditional spatial models show the spatial correlation is significant between

counties, with some evidence that the r-score of counties in adjacent counties have an effect on the

growth rate of a county’s new cases.

The presence of inter-state spillovers significantly affected the rate of increase in the number

of confirmed cases in the early stages of the outbreak. A unique feature of the United States

is that its federal government cannot compel individual states to simply close their borders nor

mandate state-specific lock-down policies. This only emphasizes the importance of other tools

that promote coordination between states’ authorities and regular citizens. First, uniform and

consistent messaging on precautionary measures such as masks, or encouraging the compliance

with social distancing restrictions and discouraging unnecessary inter-state travel, are examples of

such tools that would impact individual behavior. Second, the evidence provided in the literature

thus far (Piguillem and Shi, 2020; Berger et al., 2020) suggests that there are potentially huge

benefits from implementing a country-wide testing system as early in the outbreak as possible—

aimed at reducing the delay between test and result—thus revealing virus hot-spots much sooner

to potential travelers. Finally, the literature on fiscal federalism may offer some insights into the

role the federal government can play when the jurisdictional boundaries do not overlap with the

boundaries of regions affected by local policies.15

This discussion highlights how our findings reveal the importance of carefully coordinated policy
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responses during the early stages of an outbreak, before a virus becomes endemic, while there is

still a chance to substantially slow the spread of, or even eradicate, the virus altogether. Given

that by the very nature of the problem any policy implemented or not implemented in response to

a viral outbreak creates external effects on surrounding regions, we believe this is a very important

area for further research to inform policy makers in combating future outbreaks.
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Simonov, A., S. K. Sacher, J.-P. H. Dubé, and S. Biswas (2020): “The Persuasive Effect

of Fox News: Non-Compliance with Social Distancing During the Covid-19 Pandemic,” Working

Paper 27237, National Bureau of Economic Research.

37



Verwimp, P. (2020): “The Spread of COVID-19 in Belgium: a Municipality-Level Analysis,”

Working Papers ECARES 2020-25, ULB – Universite Libre de Bruxelles.

Weber, E. (2020): “Which measures flattened the curve in Germany?” Covid Economics, 24.

38



Notes

1We discuss possible limitations arising due to the Lucas’ critique in Section 4.3.
2Of course, we do not suggest that giving the states such ability would be desirable. We are merely evaluating its

potential impact on the spread of infections across the whole country.
3Those include Eckardt et al. (2020), Dave et al. (2020), Renne et al. (2020), Giannone et al. (2020), Akovali and

Yilmaz (2020), or Brinkman and Mangum (2020).
4See e.g., Weber (2020), Pragyan Deb and Tawk (2020), Jinjarak et al. (2020).
5A non-exhaustive list of examples includes Atkeson et al. (2020), Holden and Thornton (2020), McAdams (2020),

Favero (2020), Berger et al. (2020), Hornstein (2020), or Ellison (2020).
6While masking guidance grew in prominence over the course of the pandemic, our dataset covers the early

stages of the pandemic when such guidance was inconsistent at all levels (national, state, and county). States and
localities primarily took their queues from the national authorities with regard to masking requirements, which were
insignificant until later in 2020. On the other hand, the most prominent containment measures, listed here, were
imposed at the state-level during the initial weeks of the pandemic.

7Via Luis Sevillano on GitHub, but originally published in the New York Times and available here.
8Here the outbreak appears to stem from both Harris County (Houston) and Galveston County, which is also a

fairly densely populated area.
9See Halleck Vega and Elhorst (2015) for a detailed discussion on the SLX model and the other spatial models

employed in this paper.
10There are various versions of spatial models with temporal dynamics. Elhorst (2012) refers to a SAR model

augmented with temporal lag of the dependent variable and a temporal lag of the spatial lag as the “time-space
dynamic model.” Pace et al. (1998) provide an example with their “STAR” model. Brady (2014) provides a brief
overview of some of these models. See also Debarsy et al. (2012) for discussion.

11A table of results with time-fixed effects are available in the appendix.
12Allowing for ρ(n′, n) to have distinct value for each pair of states would yield 49× 24 = 1, 176 parameters to be

calibrated if we assume symmetric spillovers, and double that if we do not.
13We cannot say anything about suboptimality of the lenient policies, since we do not have a properly specified

social welfare function that would take into account the economic costs.
14Eckardt et al. (2020) show that border closures between European regions significantly slowed down the spread

of the virus.
15See Oates (1999) for the literature review on that topic. Rothert (2020) discusses a few examples of federal fiscal

tools that could impact local policies.
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A States’ summary statistics and calibrated fixed effects

State βn ξn Density Cases per 1 mln max(r-score)

AL 0.20 0.54 227.8 7250.8 5

AR 0.12 0.71 169.4 6339.5 3

AZ 0.16 0.62 319.3 10313.0 3

CA 0.21 0.48 1326.5 5484.6 5

CO 0.26 0.60 909.7 5739.1 5

CT 0.17 0.59 908.9 12890.1 4

DC 0.06 0.14 10275.8 14588.8 5

DE 0.13 0.72 742.1 11576.0 5

FL 0.62 0.82 795.9 6616.4 4

GA 0.30 0.61 1021.6 6694.3 4

IA 0.16 0.54 231.8 9034.4 4

ID 0.10 0.59 196.0 3049.8 5

IL 0.27 0.62 1681.7 11150.1 5

IN 0.23 0.61 641.7 6884.6 5

KS 0.28 0.78 456.7 4814.0 3

KY 0.20 0.83 561.7 3464.3 4

LA 0.32 0.71 382.4 12065.5 5

MA 0.28 0.70 1735.3 15702.4 4

Continued on next page
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State βn ξn Density Cases per 1 mln max(r-score)

MD 0.47 0.72 1698.8 11147.3 5

ME 0.10 0.69 121.8 2380.4 5

MI 0.37 0.73 940.1 6991.2 5

MN 0.27 0.63 966.2 6320.8 4

MO 0.16 0.72 812.6 3450.8 4

MS 0.14 0.46 124.7 8671.9 5

MT 0.05 0.64 28.3 812.4 5

NC 0.30 0.55 621.6 5988.1 5

ND 0.12 0.71 43.6 4598.2 2

NE 0.24 0.68 639.1 9796.5 3

NH 0.18 0.75 301.1 4235.3 5

NJ 0.40 0.75 2978.5 19350.6 5

NM 0.14 0.56 211.6 5635.6 4

NV 0.17 0.72 222.0 5664.1 5

NY 0.43 0.76 11497.0 20330.0 5

OH 0.25 0.58 825.9 4303.8 5

OK 0.19 0.86 476.9 3282.7 4

OR 0.14 0.69 531.6 1992.0 4

PA 0.22 0.69 2050.2 7010.6 5

Continued on next page
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State βn ξn Density Cases per 1 mln max(r-score)

RI 0.21 0.66 1110.4 14134.9 4

SC 0.25 0.48 292.8 6553.7 4

SD 0.14 0.85 76.0 7697.7 2

TN 0.25 0.62 527.9 5900.3 5

TX 0.23 0.61 1245.4 5306.1 4

UT 0.21 0.62 680.8 6692.3 3

VA 0.45 0.77 1545.9 7560.2 5

VT 0.03 1.00 111.8 1909.6 5

WA 0.24 0.56 499.7 4424.5 5

WI 0.17 0.65 322.2 4791.7 5

WV 0.10 0.81 160.8 1568.3 5

WY 0.04 0.83 12.4 2452.7 3
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B SIR model

B.1 Calibration procedure

B.1.1 General description

In this appendix we describe our calibration procedure. In general, we minimize the sum of squared

errors between observed (1) confirmed infections (country-wide and state-by-state) and (2) changes

in confirmed infections (country-wide and state-by-state), and those simulated in the model.

We follow a step-by-step process to have a better understanding of how each set of parameters

is identified (our model has 100+ parameters, so we believe this approach is quite useful). Table 3

in the main text details how, and along which dimension the model fit improves with each step.

B.1.2 Step-by-step process

Let θ be the vector of parameters to be calibrated at a given step, and let SSE(θ) be the sum of

squared errors between model simulated series and the data, as defined in Section 4.2 in the main

text.

Step 1 (column 1 in Table 3)

In the first step, we exploit the cross-state correlation between the growth rate of new cases and

population density, as well as the spatial correlation of new cases between states.

Assume κi = ξn = 1 for all i = 0, 1, .., 5 and for all n = 1, ..., 49.

Assume log βn = b0 + b1 · ln (densityn) + b2 · [ln (densityn)]2.

Define θ = [ρ, b0, b1, b2].

Set initial guess to be: ρ = 0.1; b0 = −2; b1 = 0.0001; b2 = −0.0001

Define θ̂ = [ρ̂, b̂0, b̂1, b̂2] = arg minθ SSE(θ)
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Step 2 (column 2 in Table 3)

In the second step, we exploit the correlation between changes in restrictions and the slow-down in

the growth of new cases, relative to what would have been predicted by the model with βn constant

over time.

Normalize κ0 = 1 and assume ξn = 1 for all n = 1, ..., 49.

Assume κi = κ̃1 · ... · κ̃i ∀i, where κ̃i ∈ [0, 1]. This ensures that ∀i we have κi ≥ κi+1.

Assume log βn = b0 + b1 · distancen + b2 · distance2
n.

Define θ = [ρ, b0, b1, b2, κ̃
1, κ̃2, ..., κ̃5].

Set initial guess to be: ρ = ρ̂; b0 = b̂0; b1 = b̂1; b2 = b̂2 (solutions from the previous step), and set

initial guess κ̃i = 0.999 for all i.

Define θ̂ = arg minθ SSE(θ)

Step 3 (column 3 in Table 3)

In the third step, we relax the assumption that the only factor behind state-specific βn is population

density.

Normalize κ0 = 1 and assume ξn = 1 for all n = 1, ..., 49.

Assume κi = κ̃1 · ... · κ̃i ∀i, where κ̃i ∈ [0, 1]. This ensures that ∀i we have κi ≥ κi+1.

Define θ = [ρ, κ̃1, κ̃2, ..., κ̃5, β1, ..., β49].

Set initial guesses to be:

• ρ = ρ̂ (solution from the previous step)

• κ̃i = ˆ̃iκ (solutions from the previous step)
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• lnβn = b̂0 + b̂1 ln densityn + b̂2 [ln (densityn)]2

Define θ̂ = arg minθ SSE(θ)

Step 4 (column 2 in Table 3)

In the fourth and final step, we relax the assumption that the effectiveness of restrictions is identical

across states.

Normalize κ0 = 1.

Define ξ̃1 ≡ 1 and consider a vector of non-negative values [ξ̃2, ξ̃3, ..., ξ49] ≥ 0.

For each n = 1, 2, ..., 49 define

ξn =
ξ̃n

max
(

1, ξ̃2, ξ̃3, ..., ξ49

)
This ensures that max(ξ1, ..., ξ49) = 1 without assuming a priori which element is set to one.

Assume κi = κ̃1 · ... · κ̃i ∀i, where κ̃i ∈ [0, 1]. This ensures that ∀i we have κi ≥ κi+1.

Define θ = [ρ, κ̃1, κ̃2, ..., κ̃5, β1, ..., β49, ξ̃2, ..., ξ̃49].

Set initial guesses to be:

• ρ = ρ̂ (solution from the previous step)

• κ̃i = ˆ̃iκ (solutions from the previous step)

• lnβn = b̂0 + b̂1 ln densityn + b̂2 [ln (densityn)]2

• ξ̃n = 1 for all n

Define θ̂ = arg minθ SSE(θ)
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B.2 Stability of parameters

Table B.2 below shows the sensitivity of the model parameters to the calibration window.

Table B.2: Sensitivity of model parameters

Calibration window

Parameter Feb 1 - Jun 14 Feb 1 - Jun 28 Feb 15 - Jun 28 Mar 1 - Jun 28

ρ 0.137 0.156 0.155 0.158
κ1 0.701 0.640 0.819 0.737
κ2 0.468 0.427 0.519 0.436
κ3 0.249 0.185 0.448 0.405
κ4 0.108 0.055 0.224 0.038
κ5 0.041 0.026 0.026 0.005
minβn 0.031 0.030 0.018 0.023
average βn 0.194 0.188 0.234 0.189
maxβn 0.478 0.624 0.816 0.467
min ξn 0.146 0.144 0.332 0.183
average ξn 0.691 0.664 0.802 0.664
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B.3 SIR model fit

Figures B.1 - B.4 show the model fit for individual 49 contiguous regions (48 states + DC).
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Figure B.1: Model (solid) vs. data (dashed) - individual states; Y-axis: cases per capita; X-axis:
days since February 01
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Figure B.2: Model (solid) vs. data (dashed) - individual states; Y-axis: cases per capita; X-axis:
days since February 01
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Figure B.3: Model (solid) vs. data (dashed) - individual states; Y-axis: cases per capita; X-axis:
days since February 01
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Figure B.4: Model (solid) vs. data (dashed) - individual states; Y-axis: cases per capita; X-axis:
days since February 01
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B.4 Spatial Models with time-fixed effects

The table below provides a comparison of the results reported in Table 1 with the spatial econo-

metric models estimated with time-fixed effects included in addition to county-fixed effects.

Table B.3: Spatial models with time-fixed effects

SAR SAR SLX SLX SDM SDM SDM Error SDM Error

r‐score ‐2.299*** 0.037 0.816** ‐1.37*** ‐0.33 ‐1.262*** ‐0.283 ‐0.90***
(0.067) (0.278) (0.32) (0.285) (0.27) (0.269) (0.243) (0.228)

W*cases 0.584*** 0.403*** 0.584*** 0.403*** 0.865*** ‐0.5946***
(0.00188) (0.0024) (0.00188) (0.0024) (0.00131) (0.00515)

W*r‐score ‐6.766*** 1.79*** ‐2.150*** 1.45*** ‐0.545** 0.858***
(0.34) (0.307) (0.29) (0.289) (0.25) (0.320)

W*error ‐0.756*** 0.741***
(0.00) (0.002)

County Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes

Time Fixed Effects Yes Yes Yes Yes

N 276408 276408 276408 276408 276408 276408 276408 276408
Notes: Spatial models estimated from April 1 through June 28, controlling for county‐level fixed effects and with county‐fixed effects and  time‐fixed 
effects (see column headers in italics). The Wald test for spatial correlation is statistically significant in all models.  Standard errors are in parentheses.  
* p<.1, ** p<.05,  *** p<.01
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