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Abstract 
The canonical infinite horizon framework with heterogenous consumers, used in macro and 
financial literature, lacks a preference-based welfare index that produces consistent normative 
predictions for different policies. In particular, the classic preference-based indices, such as 
equivalent or compensating variations, do not aggregate and they are not additive on the set of 
policies. This paper offers a positive result. We show that for arbitrary heterogenous von Neumann 
Morgenstern preferences with common discount factor, an equivalent (compensating) variation is 
nearly additive and admits a representative agent representation, as long as consumers are patient. 
Therefore, this index generates consistent quantitative comparisons of welfare effects in a wide 
variety of problems studied in the macro and finance literature. These problems include, among 
others, predictoins regarding welfare impacts of fiscal or monetary policies, costs of real business 
cycles, or welfare costs of policies implemented in financial markets. 
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1 Introduction

Consider a problem of a policymaker who designs a stimulus package in response to some

adverse economic shock. The set of available alternatives often contains multiple variants of

an economic policy. The variants may differ in size, duration, targeted consumers, etc. How

should a decision-maker quantify the welfare effects of various scenarios? In macroeconomic

literature, the canonical framework to evaluate economic policies is a stochastic infinite-

horizon model with heterogeneous consumers. This framework ranks policies according to

average utility in a population, Aiyagari (1994), Heathcote et al. (2009). However, the util-

itarian (or cardinal) approach requires interpersonal comparability of unobservable utilities

and, hence, is not in line with the ordinal paradigm of the modern economic theory.

Unfortunately, the existing economic theory does not offer a functional preference-based

criterion that gives consistent normative predictions for multiple policies. In particular, in

economies with many heterogeneous consumers, policies rarely benefit all of the agents, and

Pareto rankings are highly incomplete and thus effectively uninformative. A consumption

equivalent, an index defined within the representative agent framework, Lucas (1987), does

not have interpretation in terms of the consumers’ underlying (heterogenous) preferences.

Finally, the related classic index, equivalent variation, Hicks (1939) is ill-behaved: welfare ef-

fects and associated quantitative normative recommendations depend on the assumed status

quo or the order in which the alternatives are implemented. Moreover, for realistic pref-

erences, the index does not aggregate. This paper offers a positive result. We show that

equivalent variation acquires the desirable properties for transient policies when agents are

sufficiently patient. We next explain our result in detail.

We revisit the properties of the equivalent variation in the context of a small open econ-

omy. The welfare index is defined as follows. Fix a consumption bundle x that gives a welfare

unit. Consider two alterative policies. For an individual consumer, equivalent variation is

given by a transfer of numeraire x, which makes the factual policy equally attractive as the

counterfactual one, assuming factual prices. The aggregate effect is then given by a sum of

the effects for all consumers. Thus defined index is not affected by monotonic transforma-

tions of utility functions, and hence it does not require comparability of consumers’ utilities.

Since welfare is expressed in real terms (consumption x), its value is invariant to price nor-

malizations. Finally, the index is Paretian; whenever a counterfactual policy improves all

consumers’ preferences, the welfare effect is positive.

We are interested in two properties of an index: additivity and aggregation. An index

is deemed additive, if for any three policies, the welfare impact of the third policy relative

to the first coincides with the sum of the effects of the second policy relative to first and

third relative to second. Importantly, for an additive index welfare effects are invariant to

the assumed status quo or the sequence in which policies are implemented. Also, normative
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impacts of the policy variants can be unambiguously determined. As a result for a policy

that affects multiple aspects of an economy, the overall welfare effect can be decomposed into

individual components. Finally, additive equivalent variation coincides with the alternative,

preference-based index, compensating variation.1

The second property is defined as follows. An index aggregates, whenever welfare effects

are entirely determined by aggregate income and prices associated with policies. With this

property, welfare predictions are not affected by a redistribution of wealth among consumers.

As a result, the economy admits a fiction of a representative agent.

It is well known that, in the infinite-horizon economy, equivalent variation is not additive

for any standard preferences, and it aggregates only for Gorman form preferences, which are

not non-generic and they are not observed empirically.2 We show that equivalent variation is

nearly additive, and it approximately aggregates on a set of transient policies when consumers

are patient. More precisely, each policy can be associated with social surplus, measurable

with respect to aggregate income, such that the impact of a policy relative to its alternative

is approximated well by a difference between the policies’ surplus values. The approximation

accuracy improves with a discount factor and is exact in the limit with a discount factor

equal to one.

We demonstrate our result assuming a common discount factor among consumers.3 Oth-

erwise, the result is quite robust. We allow for arbitrary heterogenous von Neumann-

Morgenstern preferences and heterogeneous (Markov) endowment flows. Since the policies

are modeled as shocks to prices and endowments, the result facilitates comparisons for a

wide variety of policies. The latter include technological or income shocks, sales and service

taxes, lump-sum transfers, subsidies, public spending, social safety net programs, and many

others. We perform our analysis in the model with exogenous endowments. Nevertheless,

the results straightforwardly carry over to more complex production settings with non-trivial

labor-leisure and consumption-savings choices, as long as the resulting income flows coincide

with the ones assumed in this paper.

1Formally, an index is additive if for any p, p′ and p′′ one has EVp,p′ = −EVp′,p ≡ CVp,p′ . Therefore a

round trip from policy p to p′ and back yields zero welfare change, and hence, EVp,p′ = −EVp′,p ≡ CVp,p′ .
2Preferences are in Gorman polar form if they give rise to parallel Engel curves (lines) as, e.g., in the case

of homogenous CRRA preferences, Gorman (1964). With Gorman preferences, redistribution of wealth does

not affect aggregate equivalent variation. Gorman preferences are non-generic; for example in the HARA

family this property is satisfied for the set of parameters with zero Lebesgue measure. The preferences are also

very restrictive in terms of implied consumers’ behavior. For fixed prices, consumers spend additional dollars

on the same consumption bundles regardless of their level of wealth, age, gender, or other characteristics. Not

surprisingly, the empirical literature consistently rejected the Gorman hypothesis; see, e.g., Carroll (2000);

Blundell et al. (2007) and Lewbel and Pendakur (2009).
3This assumption is standard in the macro literature. It allows us to have a well-defined limit experiment

with respect to parameter, β, ignoring potential effects of the relative speed of convergence of heterogeneous

discount factors.
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Our theory has useful implications for policy-making. A discount factor is defined for a

specified unit of time, e.g., a year. For any given preferences, by redefining a period as a

quarter, a month, or a day, one can make the empirical discount factor arbitrary close to

one. Consequently, in empirical studies, one can achieve the desired accuracy by restricting

attention to policies with sufficiently short duration. In Section 4, we apply this logic to

the context of Polish economy. We use a stylized model of an economy with preference

and income distributions extracted from the available micro-econometric data. We give nor-

mative predictions for different variants of a stimulus package and contrast them with the

values derived using proposed surplus approximation. Our simulations suggest that for the

annual discount factor, β = 0.97, typically assumed in the literature, and for the economi-

cally relevant policies that affect the economy within the first four (twelve) quarter(s), the

approximation error is no greater than 1.5% (5%) of the actual value of the welfare effect.

Out paper also contributes to the aggregation literature. The recent empirical studies

strongly reject the hypothesis of Gorman form preferences and thus refute the existence

of a representative agent, Carroll (2000); Blundell et al. (2007) and Lewbel and Pendakur

(2009). We partly quantify these findings by showing that, at least for transient policies, a

representative agent approach may be justified, even if the underlying consumers’ preferences

themselves violate the Gorman hypothesis.

The approximation result relies on the following mechanism.4 In the considered frame-

work, savings induced by transient policies are spent on consumption in many subsequent

periods. With patient consumers, the differences in savings can have at most a negligible

impact on the marginal utility of money. With a discount factor near one, the infinite horizon

framework is virtually indistinguishable from a quasilinear economy in terms of observables:

the frameworks give identical predictions regarding choices and preference-based welfare. In

the quasilinear model, in turn, equivalent variation is well-behaved. Thus, as a byproduct,

we offer a micro-foundation for the assumption of quasilinear preferences, sometimes made

in the macro and financial literature.5

4Similar mechanism has been explored in a general equilibrium setting in Bewley (1976) to establish

permanent income hypothesis, as well as in Levine and Zame (2002) to show that incomplete market converges

to complete markets. In a context of individual consumer, Vives (1987) uses this observation to characterize

marginal utility of money, and income effects in each market as a number of goods increases to infinity. These

classic results, however, are not sufficient to establish convergence of equivalent variation, due to so-called

fallacy of composition. For the discussion see Mas-Colell et al. (1995), p. 89.
5These, among others, include applications in monetary economics, Lagos and Wright (2005), optimal

taxation literature, Barro (1979); Aiyagari et al. (2002); Bhandari et al. (2016), financial economics, Carvajal

et al. (2012), and the labor literature based on the search model Mortensen and Pissarides (1994) that all

critically rely on quasilinear preferences. Some of these papers assume preferences over the consumption

and labor, captured by quasilinear instantaneous utilities wherein consumption enters the utility function

linearly, period by period. In contrast, the disutility of labor is strictly concave. With a riskless asset,

this formulation is equivalent to a specification with a single linear consumption good x0 that summarizes
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The rest of this paper is organized as follows. Section 2 explains the main idea within a

simple example of an open economy. Section 3 states the approximation result, and Section 4

tests the approximation in the context of the Polish economy. Section 5 concludes.

2 Motivating Example

In this section we explain the key ideas in a simple example of an economy with two con-

sumers. Each consumer i = 1, 2 maximizes CRRA preferences over infinite consumption

streams, represented by utility

max
∞∑
t=0

βt (c
i
t)

1−θi − 1

1− θi
,

facing the intertemporal budget constraint

s.t. cit + qt+1w
i
t+1 = wi

t + Ai
tl
i
t,

for each t ≥ 0. In the small open economy prices of bonds are formed in international

markets. In each period a consumer inelastically supplies one unit of labor lit = 1. Ai
t is

labor productivity and wi
t is wealth with which a consumer enters period t. In the absence of

a policy (or, alternatively, for a neutral policy), the economy is stationary: labor productivity

is Ai
t = 2 for i = 1, 2 and the price of a one-period bond is qt+1 = β for all t ≥ 0. The

aggregate output in the economy in period t is Yt ≡
∑

i=1,2A
i
tl
i
t.

We next verify the additivity and aggregation of equivalent variation in the example.

Let the factual policy p be neutral, i.e., the fundamentals are not affected by shocks. We

consider two alternative counterfactual scenarios. For policy p′ period-zero productivity

of both consumers becomes Ai′
0 = 3. For p′′ productivity of consumer one, is A1′′

0 = 4,

while for consumer two it is A2′′
0 = 2. In both scenarios, the price of a bond increases to

q′1 = q′′1 = 2. Note that with inelastic labor supply, both counterfactual scenarios result

in the same aggregate output, Y0 = 6. The policies, however, differ in how they allocate

income among consumers. As a result, their welfare impacts might differ if the indexes are

non-additive.

We summarize numerical simulations in Tables 1-2. The top four rows report welfare

effects for different values of a discount factor. The next two rows quantify the degree to

which the predictions violate the aggregation and additivity property (these values are zero

whenever the index has the respective properties). Finally, the last row measures how far

the equivalent variation is from its limit prediction.

For parameter values θi = 2 for i = 1, 2, preferences are in Gorman polar form and equiv-

alent variation is independent of income distributions. The index aggregates and alternative

expenditures in all the periods.
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Table 1: Welfare effects for homogenous preferences

β 0.5 0.7 0.9 0.95 0.98 0.99 Limit

EVp,p′ 3.5556 2.1652 1.5327 1.4305 1.3765 1.3596 1.3431

CVp,p′ 2.0000 1.6671 1.4334 1.3864 1.3600 1.3515 1.3431

EVp,p′′ 3.5556 2.1652 1.5327 1.4305 1.3765 1.3595 1.3431

CVp,p′′ 2.0000 1.6671 1.4334 1.3864 1.3600 1.3515 1.3431

Ag% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Ad% 0.4375 0.2300 0.0648 0.0308 0.0120 0.0059 0.0000

L% 1.6472 0.6120 0.1411 0.0650 0.0248 0.0122 0.0000

Note: The table reports welfare effects for risk aversion coefficients θ1 = θ2 = 2

and x given by a unit of consumption in period t = 2. The first two rows report

equivalent and compensating variation for policy p′. The two subsequent rows

give values for policy p′′. The last three rows report three gaps: the aggregation

gap, Ag% ≡ (EVp,p′′ − EVp,p′)/EVp,p′ the additivity the gap Ad% ≡ (EVp,p′ −
CVp,p′)/EVp,p′ and the limit gap L% ≡ (EVp,p′ −L)/L, where L is the limit value

of equivalent variation as β → 1.

counterfactual policies generate identical welfare predictions, EVp,p′ = EVp,p′′ . Indeed the

aggregation gap, which quantifies the departure from the aggregation benchmark, is zero,

Ag% = 0, for all β < 1. Note, however, that the equivalent and compensating variations

are not equal to each other, EVp,p′ ̸= CVp,p′ . This shows that the index is not additive.

Consequently, the additivity gap that measures non-additivity is nonzero, |Ad%| > 0.

For heterogeneous preferences, equivalent variation does not exhibit any of the considered

properties. Table 2 reports the values of welfare effects and gaps for risk aversion θ1 = 0.5

and θ2 = 5. Indeed, equivalent variations diverge in the counterfactual scenarios, and they

differ from the corresponding compensating variations. As a result, the aggregation and

additivity gaps are nonzero. In summary, the welfare indices are not additive and aggregate

only in the particular instance of homogenous preferences.

We now demonstrate that equivalent variation becomes additive, and it aggregates with

sufficiently patient consumers. For this, we consider the limit values of the welfare effects as

the discount factor approaches one. Even though the utilities attained under the considered

policies are unbounded, the preference-based equivalent variation has well-behaved limits.

We report their values in the last columns of Tables 1-2. For both types of preferences, the

limits satisfy the fundamental properties considered in this paper, and the additivity and

aggregation gaps converge to zero.

It is clear from the example of a small open economy with patient consumers the classic
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Table 2: Welfare effects for heterogenous preferences

β 0.5 0.7 0.9 0.95 0.98 0.99 Limit

EVp,p′ 6.9098 3.9849 2.5231 2.2769 2.1456 2.1043 2.0641

CVp,p′ 2.9964 2.6775 2.2793 2.1721 2.1073 2.0857 2.0641

EVp,p′′ 7.3271 4.1319 2.5530 2.2902 2.1505 2.1067 2.0641

CVp,p′′ 2.9964 2.6775 2.2793 2.1721 2.1073 2.0857 2.0641

Ag% 0.0604 0.0369 0.0119 0.0058 0.0023 0.0011 0.0000

Ad% 0.5664 0.3281 0.0966 0.0461 0.0178 0.0088 0.0000

L% 2.3476 0.9305 0.2223 0.1031 0.0395 0.0194 0.0000

Note: The table reports welfare effects for risk aversion coefficients θ1 = 0.5, θ2 = 5

and x given by a unit of consumption in period t = 2. The first two rows report

equivalent and compensating variation for policy p′. The two subsequent rows

give values for policy p′′. The last three rows report three gaps: the aggregation

gap, Ag% ≡ (EVp,p′′ − EVp,p′)/EVp,p′ the additivity the gap Ad% ≡ (EVp,p′ −
CVp,p′)/EVp,p′ and the limit gap L% ≡ (EVp,p′ −L)/L, where L is the limit value

of equivalent variation as β → 1.

welfare index is well-behaved. In the next section, we formalize this idea in the framework

with general von Neumann-Morgenstern preferences and fundamental shocks. We also de-

rive a simple formula for the limit index that quickly makes consistent predictions even in

reasonably complex settings.

3 The main result

3.1 Small Open Economy

Consider an infinite-horizon economy with i = 1, 2, ..., I consumers. Each consumer i has

preferences over random, strictly positive consumption flows ci = {cit}∞t=0, represented by the

expected utility function

U i
(
ci
)
= E

∞∑
t=0

βtui(cit). (1)

Instantaneous utility function satisfies the standard assumptions; function ui : R+ → R
is twice continuously differentiable, strictly increasing, strictly concave, and satisfies Inada

conditions. Consumers have common discount factors β. Otherwise, preferences can be

heterogeneous.

Each consumer is endowed with one unit of time per period, that can be used to produce

output. Individual output in period t is given by yit = Ai
tf

i(lit) where labor choice is lit ∈
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[0, 1]. Production function f i(·) is non-negative and strictly increasing and process of labor

productivity Ai = {Ai
t}t is determined by some fundamental stochastic process s = {st}t.

Consumers hedge idiosyncratic productivity shocks by trading assets in international

markets that are dynamically complete. In state st a consumer faces the usual intertemporal

budget constraint

cit + E(qt+1w
i
t+1|st) ≤ wi

t + Ai
tf

i(li).

Random variable wi
t+1 is wealth in different states of the next period chosen by a consumer

and qt+1 are prices of the corresponding state-contingent claims.

Consumers enter period zero, state s0 with no wealth.6 The fundamentals evolve accord-

ing to an underlying Markov chain s = {st}t with finite state space S = {0, 1, 2, ..., S}. For
such process an event in period t is identified by history ht = {s0, s1, ..., st}. A transition

matrix has real eigenvalues, for which process has a unique stationary distribution with full

support. We denote stationary a state variable s̄. For the neutral policy, (in absence of

shocks), the fundamentals satisfy the following assumption

Assumption 1. (Stationarity) There exist functions q : S → R++ and Ai : S → R++

for each i such that the price of the contingent consumption in st+1, in state st is given by

qst+1 |st = βq(st+1)/q(st) and the realization of productivity of consumer i in state st is A
i(st).

Consumers’ productivities can be arbitrarily correlated with each other as well as with

international prices. The assumption on prices is standard in the literature — it assures that

optimal consumption flows are martingales.

Economic policies are broadly defined as arbitrary perturbations of fundamentals, namely,

domestic productivity and international prices. Formally, a policy is represented by a tuple

of random processes p = (∆q, {∆Ai}i), adapted to the natural filtration of underlying Markov

chain s. Note that the admissible shocks can be history dependent: under policy p, in the

event following history ht+1 = {s0, s1, ..., st, st+1} the price of contingent consumption adjusts

to

qst+1|st = β
q(st+1) + ∆q

ht+1

q(st) + ∆q
ht

> 0,

where ht is a truncation of ht+1. Similarly, productivity of consumer i after history ht is

perturbed to Aht = Ai(st) + ∆Ai

ht
> 0. Under neutral policy aggregate income Y = {Yt}t ,

after history ht is given by Yht =
∑

i A
i(st)f

i(1). For policy p aggregate income is perturbed

by ∆Y = {∆Y
t }t where for each history, ∆Y

ht
≡

∑
i ∆

Ai

ht
f i(1).

We restrict attention to policies, for which effects on fundamentals vanish over time. In

particular, we make the following assumption:

6The initial states of the consumers can potentially differ among consumers.
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Assumption 2. (Vanishing shocks) Consider policy p. There exist constants C > 0 and

∆ ∈ (0, 1) such that |∆q
ht
| ≤ C × (∆)t and |∆Ai

ht
| ≤ C × (∆)t for all period t, histories ht,

and i.

Collection of all policies that satisfy Assumption 2 is denoted by P . The assumed exogenous

price process arises naturally in a stochastic representative agent economy with a discount

factor β.7 Importantly, in this micro-foundation, the discount factor of international markets

coincides with the one of the considered small open economy.

Similarly to the example, we measure welfare effects as a standard aggregate equivalent

variation, i.e., a sum of equivalent variations for all consumers, EVp,p′ ≡
∑

i EV i
p,p′ , where

components EV i
p,p′ are defined as sufficient transfers of welfare numeraire flow x. We provide

the formal definition of the index in Appendix A.2.

We conclude this section by showing that the welfare index is uniquely defined for an

arbitrary pair of policies.

Proposition 1. For any pair p, p′ ∈ P and discount factor β < 1 equivalent variation

EVp,p′ ∈ R exists and it is unique.

Proof of Proposition 1: The proof is in appendix A.2.

Consequently, the comparative statics of equivalent variation with respect to a discount

factor is a well-posed problem.

3.2 Surplus Approximation

In this section we state our main result. For this we first derive a formula for approximate

surplus. Let q̄ ≡ q(s̄) and Āi ≡ Ai(s̄) be the stationary prices and productivity, where

random variable s̄ is given by the stationary distribution over states. Consider equality

E
[
q̄ui′−1(q̄λi)

]
= E

[
q̄Āif i(1)

]
, (2)

where ui′−1 is an inverse of the marginal utility. Equation (2) has a unique solution, λ̄i, that

is strictly positive.8

For any history let c̄i(∆q
ht
) = ui′−1([q(st) + ∆q

ht
]λ̄i) be an optimal consumption in event

ht assuming price perturbation ∆q
ht

and marginal utility of money λ̄i. We next define two

7Such prices will be observed in a representative agent economy with preferences represented by a function

of the form (1), and the endowment following a Markov chain, perturbed by shocks satisfying the assumption

analogous to Assumption 2.
8The left-hand side of equation (2) is a continuous function strictly decreasing in λi with range R+. On

the right-hand side, a real number is strictly positive. It follows that a solution exists and is unique. Scalar

λ̄i gives the marginal utility of money—a Lagrangian multiplier — in the optimization problem, in which

for which optimal consumption satisfies budget constraint in a steady-state, period-by-period.
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components of the surplus function for each event. The first component captures aggregate

welfare gains/losses from trade, resulting from shocks to international markets. For ht, the

first component is

strade(∆
q
ht
) ≡

∑
i

(
ui(c̄i(∆q

ht
)

λ̄i
− (q(st) + ∆q

ht
)c̄i(∆q

ht
)

)
. (3)

For an individual consumer the surplus is geometrically represented by the area under the

(λ̄-normalized) marginal utility and the price of consumption. The aggregate surplus is then

the sum of such areas for all consumers. The second component is an aggregate nominal

income,

sincome(∆
q
ht
,∆Y

ht
) ≡ (q(st) + ∆q

ht
)× (Yht +∆Y

ht
). (4)

For a given policy p the approximate social surplus is given by a sum of the two components

for all date-events, normalized by the corresponding value for the neutral policy:9

S(∆q,∆Y ) ≡
∞∑
t=0

E
[
strade(∆

q
t )− strade(0) + sincome(∆

q
t ,∆

Y
t )− sincome(0, 0)

]
. (5)

Since for the admissible policies shocks are vanishing over time, the surplus is finite for any

p ∈ P . The formula is additive across consumers and histories. It is also measurable with

respect to market level data: aggregate output and prices of contingent claims.

We are ready to state our theorem. Consider policies p, p′ ∈ P and a welfare numeraire

x = {xt}t that takes zero value in all events, in which perturbations of prices for both policies

are non-zero, i.e., xht∆
q
ht

= xht∆
q′

ht
= 0. We also require that the limit present value (as

β → 1) is positive and finite, i.e., v̄x ≡
∑∞

t=0 E[qtxt] ∈ R++. For example, if considered

policies perturb prices after period zero, then the natural welfare numeraire is a unit of

consumption in period zero. Below we state the main result of the paper.

Theorem 1. Aggregate equivalent variation has an additive limit, measurable with respect

to aggregate income.

lim
β→1

EVp,p′ =
S(∆q′ ,∆Y ′

)− S(∆q,∆Y )

v̄x
∈ R.

Proof of Theorem 1: The proof is in the appendix.

For all policies in P , the limit of equivalent variation admits a surplus representation. As

such, the index is additive. Moreover, the surplus magnitude is measurable with respect to

9The surplus equation involves infinite sums, and without the neutral policy normalization the surplus

value (5) would be infinite.
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aggregate income. One can easily find the value of equivalent variations using the surplus

formula.

The choice of welfare numeraire x affects predictions up to a normalization constant. The

choice of x is restricted in two ways. First, to eliminate the differential effects of shocks on

the value of the numeraire, it is zero in periods for which policies perturb prices. Also, the

present value of the numeraire in the limit has to be bounded. Otherwise, the numeraire

would be infinitely more preferred relative to the welfare impact, and welfare effects would

vanish. Any numeraire that takes non-zero values only in a finite number of periods satisfies

this restriction. The assumption, however, rules out, for example, stationary consumption

flows.

4 Approximation in practice

As we explained in the introduction, one way of thinking about our result is that we offer

a policymaker’s tradeoff. One can achieve the desired prediction accuracy by considering

policies with a sufficiently short timespan for empirically observed patience. In this section,

we illustrate this tradeoff in the context of the Polish economy.

The reasons we chose to work with the Polish economy are threefold. First, the Polish

economy is large enough to be regarded as relevant. Moreover, Poland is well integrated

within the EU markets, while its impact on the European markets, and therefore, prices, is

relatively limited. This motivates the small open economy assumption. Finally, we test the

approximation within a context of a once-and-for-all intervention, a stimulus package of the

EU in coronavirus response. Since the external EU transfers fully fund the policy, we can

ignore the financing source, which significantly simplifies the simulations.

The basic framework is as follows. Consumers are heterogeneous in two dimensions,

namely, productivity and risk aversion (CRRA preferences). We extract the distributions

of the respective parameters Ai, θi from the available micro-econometric data for Poland.

The marginal distributions of the parameters are in Table 3.10 In the baseline scenario, the

risk aversion and productivity are independently distributed. Thus, the joint distribution

is given by the product of the two marginals. In the Appendix, we perform robustness

checks in which we allow for non-zero correlations. These variations do not significantly

10We borrow the productivity distribution from Tyrowicz, Makarski and Bielecki Inequality in an OLG

economy with heterogeneous cohorts and pension systems, The Journal of Economic Inequality, vol. 16(4),

pages 583-606 (2018). For risk aversion, we use micro-data on Poland’s risk-taking preferences from Falk et

al. Global Evidence on Economic Preferences, The Quarterly Journal of Economics, Volume 133, Issue 4,

November 2018, Pages 16451692. The survey measures risk attitude as ... we covert these values intro relative

risk aversion θ using the following algorithm ... . In appendix X we explain in detailed the construction of

Table 3.
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Table 3: Empirical distribution of parameters

Decile 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ai
st=1 0.70 0.76 0.84 0.93 0.98 1.03 1.08 1.14 1.20 1.26

θi 0.3420 0.7760 1.2010 1.6450 2.0790 2.5130 2.9470 3.3810 3.8150 4.2490

Note:

change the quantitative predictions. Finally, a quarterly discount factor is β = 0.9924,

which corresponds to the annual value of 0.97, typically assumed for the Polish economy.

We introduce uncertainty to our model via global and idiosyncratic shocks. The labor

markets can be either in a normal state or in a recession. An individual consumer is employed

or unemployed. As a result, in each period, a consumer can be in one of the four states:

an employed consumer during the normal time (s = 1), an unemployed consumer during

the normal time (s = 2), an employed consumer during a recession (s = 3), an unemployed

consumer during a recession (s = 4). Furthermore, the price of consumption is q(s) = 1 for

all states s = 1, 2, 3, 4, which is consistent with empirical values observed in actual markets.

We construct an empirical transition matrix for the four states from the Polish panel data

on the activity in labour market.11 For the aggregate states of the labor market (Si
econ =

N,R) we first classify the Polish labour market in different periods either as being in a

normal state (N) or in recession, (R). The empirical frequencies with which the labour

market transitions between the aggregate states approximate the probabilities in the matrix

Pecon(S
′
econ|Secon) =

[
πN |N πR|N

πN |R πR|R

]
=

[
0.8650 0.1350

0.2080 0.7920

]
(6)

We derive the transition matrices for the employment status (Si
ind = E,U}) from the panel

data, by averaging individual probabilities, conditional on aggregate state. For normal state

(N), the transition probabilities are

P i([S ′
ind|Sind]|Secon = N)) =

[
πi
E|E|N πi

U |E|N

πi
E|U |N πi

U |U |N

]
=

[
0.9910 0.0090

0.1520 0.8480

]
(7)

A slowdown in labor markets (R) elevates the probability with which a consumer becomes

and remains unemployed according to

P i([S ′
ind|Sind]|Secon = R)) =

[
πi
E|E|R πi

U |E|R

πi
E|U |R πi

U |U |R

]
=

[
0.9850 0.0150

0.0880 0.9120

]
(8)

For the four-states Markov process, the matrix is obtained by element-wise multiplication

of an augmented transition matrix for the aggregate states. The block matrix consists of the

11BAEL - Polish Labor Force Survey
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conditional probabilities of retaining and losing a job by an individual. Thus constructed

matrices, detailed in the Appendix, yield an unconditional employment rate of 0.9161, which

matches the average BAEL rates in Poland.

In the experiment, we compare various recovery paths from the slowdown triggered by

the COVID-19 pandemic. For this, we assume that initially, the labor market is in the state

of recession (R). Within each homogenous group of consumers, period zero’s employment

rate is equal to 0.94, the empirical value in January 2021. The initial beliefs of the consumers

are determined accordingly.

The factual policy is an economic recovery path without any intervention. In this sce-

nario, in regular times, an employed worker’s productivity is reported in the first row of

Table 3. When a slowdown hits the economy, productivity is uniformly reduced by a frac-

tion, reflecting an estimated drop in real wages during economic downturns. The unemployed

worker receives a constant unemployment benefit, regardless of the aggregate state of the

economy. We assumed that his productivity is then 0.15. A counterfactual stimulus package

proposed by the EU aims at preserving jobs, albeit at a lower productivity level. Technically,

the easiest way to incorporate such a policy in our environment is by introducing an addi-

tional state for a consumer, supported employed - the ones who would become unemployed

in the absence of the stimulus package.

When the job protection policy is in place, consumers either are employed or move to the

supported employed state. We consider three variants of the policy in which the productivity

of these agents in this new state equals to k = 25%, 50%, and 75% of their productivity in

normal employment states. Once the policy expires, the supported employed lose their

benefit and become unemployed in that period. Additionally, in the counterfactual policy,

we increase the benefit for unemployed agents to a new constant value of 0.25. Since the

stimulus is financed from the European budget, the policy’s costs are ignored in analyses.

We consider the policy variants that last T = 1, 2, 4, 8, 12 quarters.

Table 4 reports equivalent variation for policies with different lengths. The table illus-

trates the tradeoff we posited in the introduction. For policies with a shorter time horizon,

the surplus approximation is more accurate. For policies that last less than one year, the

error is no greater than 1.5% points, while this error increases to 5% for policies that last

four years.

5 Discussion

5.1 Identification of surplus

Policy makers a priori rarely have access to information regarding consumers preferences. In

the companion paper Weretka (2018a), we show that, within a dynamic quasilinear economy,

12



Table 4: Aggregated EV convergence

number of quarters

1 2 4 8 12

EV 0.0060 0.0163 0.0458 0.1250 0.2162

L 0.0060 0.0164 0.0465 0.1291 0.2272

[EV/L -1] ×100 0.00 -0.48 -1.41 -3.17 -4.82

the social surplus can be easily and accurately non-parametrically recovered from the prices

of a relatively small portfolio of securities, realized under a factual policy (technically from

a single observation of the equilibrium correspondence). Because the infinite horizon frame-

work considered in this paper converges in terms of equilibrium allocation, prices, and social

welfare to some quasilinear limit, our identification result straightforwardly carries over to

the canonical consumption-based infinite horizon framework considered in this paper.
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A Appendices

Proof of Theorem 1: The proof of the theorem is structured as follows. In section ...

A.1 A static problem

In this section we use the standard arguments to recast the recursive problem of a consumer

from Section 3.1 as a static choice of a consumption flow ci = {cit}t, among consumptions

flows adapted with respect to a natural filtration of s

X i ≡ {ci|cit > 0 for all t and U i(ci) ∈ R},

given endowments and prices of state contingent claims.

14



First observe that with no disutility of labor and non-satiated preferences, a consumer

is going to supply the maximal amount of labor, lit = 1. Consequently, for each policy

income is effectively determined by endowment flow ei = {eit}t, for each history given by

eiht
≡ (Ai(st) + ∆Ai

ht
)f i(1) > 0.

In the recursive problem, consider an event followed by history ht = {s0, s1, ..., st}. Us-

ing a rollover trading strategy of contingent claims, a consumer can transfer one unit of

consumption to this event, paying in terms of consumption in s0

Price(ht) = πs1qs1|s0 × πs2qs2 |s1 × ...× πstqst |st−1

= πs1|s0β
q(s1) + ∆q

h1

q(s0) + ∆q
h0

× πs2|s1β
q(s2) + ∆q

h2

q(s1) + ∆q
h1

× ...× πst|st−1β
q(st) + ∆q

ht

q(st−1) + ∆q
ht−1

= πhtβ
t
q(st) + ∆q

ht

q(s0) + ∆q
h0

.

where πht is the unconditional probability of event followed by ht. For all histories one can

normalize prices Price(ht) by factor 1/(q(s0) + ∆q
h0
). The recursive problem with dynamic

trading strategy is equivalent to a static choice of a lifetime consumption plan in period zero.

The process of state contingent prices ζ = {ζt}t for history ht is given by ζht ≡ q(st)+∆q
ht

> 0.

More specifically, for policy p, and with additional transfer of α units of welfare numeraire

x, budget constraint is given by

bip(c
i, β) ≡ E

∞∑
t=0

βtζt(c
i
t − eit − αxt) ≤ 0.

Budget set is a collection of measurable, strictly positive processes that satisfy budget con-

straint, i.e., Bi
p ≡ {ci|bip(ci, β) ≤ 0}. The recursive consumer’s problem is then equivalent to

a static problem

max
ci∈Bi

p∩Xi
E

∞∑
t=0

βtui(cit). (9)

Throughout the appendix we use the static formulation of the problem. We also adopt the

following notation: for policy, p, and discount factor β, present value of flow ci is defined as

PV β,p(ci) ≡ E

∞∑
t=0

βtζtc
i
t.

For the welfare numeraire and the individual endowment we uses the following compact no-

tation: vx ≡ PV β,p(x) and ve
i ≡ PV β,p(ei), respectively. Observe that under Assumption 2

present value of endowment is an increasing sequence of sums, bounded from above and

consequently ve
i ∈ R++. Similarly, it is straightforward to show that for any policy p ∈ P

by Assumptions 1-2 there exist scalars 0 < ζ < ζ and 0 < e < e such that for all periods t,

all histories ht and all consumers i, one has ζ < ζht < ζ and e < eiht
< e.
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A.2 Equivalent variation

We first state a definition of equivalent variation in terms of preferences. Then we reformulate

the definition using a utility representation. Consider an abstract problem of a consumer

with set of alternatives X i ⊂ RN , where N can be finite of infinite. Let Bi
p be a budget set

associated with factual policy p and let Ψi
p′ be the upper countur set of an optimal alternative

that is attained under the counterfactual policy p′. Equivalent variation is a minimal transfer

of welfare numeraire x ∈ X i, shifting Bi
p that allows to attain a bundle in Ψi

p′ . Formally, the

equivalent variation is a solution to the following problem:

EV i
p,p′ ≡ min

z∈Xi,α∈R
α, (10)

subject to z ∈ Ψi
p′ and z ∈ Bi

p + αx. We say that equivalent variation is attained at z̄ ∈ X i

if tuple (z̄, EV i
p,p′) is a solution to program (10). Note that equivalent variation is defined in

real terms (upper countur set and budget set) and hence it is not affect by normalization of

utility or prices.

The consumer preferences considered in this paper admit a strictly monotone, continuous

utility representation and the budget sets are determined by linear inequality constraints.

In this instance equivalent variation can be simplified as follows. Define value function

V i(p, α) = max
ci∈Xi

E
∞∑
t=0

βtui(cit) s.t. E
∞∑
t=0

βtζtc
i
t ≤ E

∞∑
t=0

βtζt(e
i
t + αxt) = ve

i

+ αvx. (11)

For policies p, p′ equivalent variation is given by as a solution to the following equation

V i(p, EV i
p,p′) = V i(p′, 0). (12)

Next, we prove Proposition 1 by showing that equivalent variation is well defined for any

pair of policies p, p′ that satisfy our assumptions.

Proof of Proposition 1:

Step 1. In this step we characterize properties of function V i(p, ·). Derivative ui′ : R++ →
R++ is a continuous and strictly decreasing bijection, therefore its inverse ui′−1 is well-defined,

is continuous and strictly decreasing. The solution to program (11), if it exists, satisfies the

first order conditions in the standard Lagrangian problem. For an event identified by history

ht the first order condition with respect to consumption, βtπhtu
i′ (ciht

)
= πhtβ

tζhtλ
i, can be

equivalently reformulated as ciht
= ui′−1(λiζht). Replacing the latter conditions in the budget

constraint implicitly defines scalar λi,

E
∞∑
t=0

βtζtu
i′−1(λiζt) = ve

i

+ αvx. (13)
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The limit sum on the left hand side is well defined for any λi > 0 and β ∈ (0, 1), since the se-

quence is increasing in t and it is bounded from above by E
∑∞

t=0 β
tζui′−1(λiζ) =

ζui′−1(λiζ)

1−β
<

∞. Moreover the limit sum is a strictly decreasing continuous bijection in λi, mapping

R++ → R++. Consequently equation (13) has a unique solution if and only if the constant

on the right hand side is strictly positive, or, in terms of parameter, α > −ve
i
/vx. Given

strictly convex separable preferences, solution λi > 0, along with stochastic consumption flow

ci = {cit}∞t=0 defined as cit = ui′−1(λiζt) satisfy necessary and sufficient conditions for optimal-

ity. For policy p, solution is uniformly bounded from above by ūi′−1(λiζ) < ∞ and from below

by ui′−1(λiζ) > 0. As a result, for any α > −ve
i
/vx limit V i(p, α) = E

∑∞
t=0 β

tui(ui′−1(λiζt))

exists. Moreover, since V i(p, ·) is a sum of continuous bijections, and itself it is a continuous

bijection mapping (−ve
i
/vx,∞) → (infci u

i(ci)/(1 − β),∞). Importantly, the target set is

independent of a particular policy.

Step 2. By the previous step V i(p′, 0) ∈ (infci u
i(ci)/(1 − β),∞). Since V i(p, ·) is a

bijection, its inverse exists and is a bijection as well. It follows that equation (12) has the

unique solution, given by EV i
p,p′ = V i,−1(p, V i(p′, 0)) ∈ (−ve

i
/vx,∞). □

A.3 Temporary policies.

Fix τ < ∞. In this and the next section we characterize equivalent variation for a set of

temporary policies Pτ ⊂ P , restricted to ones whose effects vanish in finite time τ , i.e., for

which ∆q
ht

= 0 and ∆Ai

ht
= 0 for all t > τ , ht and i. We extend our characterization to all

polices in P in Section A.5.

We first introduce a reduced from of the static problem from Section A.1. For any wi ∈ R,
consider the following problem

vi(wi) ≡ max
{cit}∞t=τ+1

E
∞∑

t=τ+1

βtui(cit), s.t. E
∞∑

t=τ+1

βtζtc
i
t ≤ E

∞∑
t=τ+1

βtζte
i
t + wi (14)

Since by assumption prices and endowments after τ are the same for all considered policies,

function vi(·) is independent of a particular policy. The set of consumption flows that

satisfy budget constraint is empty, whenever borrowing constraint fails, i.e., wi ≤ wi ≡
−E

∑∞
t=τ+1 β

tζte
i
t. The next lemma shows the converse: the domain is non-empty, and the

solution is uniquely defined whenever the borrowing constraint is satisfied.

Lemma 1. Program (14) has a unique solution if and only if wi > wi.

Proof of Lemma 1:

We essentially follow the steps of the proof of Proposition 1. By Inada assumption

constraints cit > 0 are not binding for t > τ and the solution to the program is given by
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the first order conditions in the Lagrangian problem. For each t and history ht optimal

consumptions satisfies ciht
= ui′−1(λiζht) where shadow price λi can be derived from the

budget constraint (multiplied by constant 1− β):

η
(
β, λi

)
≡ (1− β)E

∞∑
t=τ+1

βtζtu
i′−1(λiζt) = (1− β)wi + (1− β)E

∞∑
t=τ+1

βtζte
i
t. (15)

For any fixed λi > 0, the left hand side is a limit of an increasing sequence bounded from

above, and, hence it is well defined and finite. Function η (β, ·), is a strictly decreasing

bijection, mapping R++ → R++. The right-hand side of the equality gives a real number.

Equation (15) has a solution if and only if the constant is strictly positive, or wi > wi.

Given strictly convex separable preferences solution λi > 0, along with random consumption

flow ci = {cit}∞t=τ+1 such that cit = ui′−1(λiζt) satisfy necessary and sufficient conditions of

optimality. □

For the set of policies truncated to the first τ periods the reduced-form problem consists

of three elements: consumption space, preferences and budget set correspondence defined

as follows. Consider consumption flows ci = (wi, {cit}τt=0) where {cit}τt=0 is a stochastic

process that satisfies the respective measurability conditions with respect to {s}τt=0. In the

reduced-form model consumption space is X̃ i ≡ {ci|wi > wi and cit > 0 for t = 0, 1, ..., τ}.
Reduced-form preferences, over consumption flows in the reduced from are represented by

utility function

Ũ i(ci) ≡ vi(wi) + E
τ∑

t=0

βtui(cit). (16)

Finally, for policy p and a monetary transfer αvx, in the reduced form problem budget set

B̃i
p is derived from the constraint

b̃ip
(
ci, β

)
≡ wi + αvx + E

τ∑
t=0

βtζt(c
i
t − eit) ≤ 0. (17)

By ẼV
i

p,p′ we denote an equivalent variation in the reduced-form, expressed in monetary units

wi, or x̃ = (1, 0, ..., 0). We next demonstrate the sufficiency of the reduced-form problem for

equivalent variation in the infinite horizon model.

Lemma 2. Fix β ∈ (0, 1) and welfare numeraire x for which vx < ∞. Equivalent variation

in the infinite horizon problem is well defined if and only if equivalent variation is well defined

in the reduced form. Moreover, the indices are related accordingly:

EV i
p,p′ =

ẼV
i

p,p′

vx
.

18



Proof of Lemma 2:

We demonstrate the lemma in three steps. We show the equivalence of the two repre-

sentations of the problem in terms of budget sets (Step 1), optimal choices (Step 2), and

welfare index (Step 3).

For a stochastic process ci = {cit}∞t=0 ∈ X i in the infinite horizon problem (henceforth

referred to as IH), define a corresponding reduction ci− ≡ (wi
ci− ,

{
ci−t }τt=0

)
∈ X̃ i as follows:

wi
ci− ≡ E

∑∞
t=τ+1 β

tζt(c
i
t − eit) is the value of consumption in periods after τ and ci−t = cit

for t = 0, 1, ..., τ . For a process ci = (wi, {cit}τt=0) ∈ X̃ i in the reduced form (RF) define its

extension ci+ ≡ {ci+t }∞t=0 ∈ X i as ci+t ≡ cit for t = 0, 1, . . . , τ while {ci+t }∞t=τ+1 is a solution to

Program (14) given wi.

Step 1. We first demonstrate the equivalence of the two representations in terms of

budget sets, shifted by vector αx.

Claim 1. Suppose consumption flow in IH satisfies ci ∈ X i ∩ (Bi
p + αx). Reduction ci− is

well-defined in RF and satisfies ci− ∈ X̃ i∩(B̃i
p+αvxx̃). Conversely, for ci ∈ X̃ i∩(B̃i

p+αvxx̃)

in RF, its extension, ci+, is well-defined and satisfies ci+ ∈ X i ∩ (Bi
p + αx).

Proof of Claim 1:

Fix ci ∈ X i ∩ (Bi
p + αx) in IH. Since ci ∈ X i, for all t = 0, . . . , τ one has cit > 0 and

wi
ci− ≡ E

∑∞
t=τ+1 β

tζt(c
i
t − eit) > −E

∑∞
t=τ+1 β

tζte
i
t = wi. Moreover, ci ∈ Bi

p + αx and hence

E
∑∞

t=0 β
tζt(c

i
t − eit − αxt) ≤ 0. This implies

wi
ci− ≡ E

∞∑
t=τ+1

βtζt(c
i
t − eit) < E

τ∑
t=0

βtζte
i
t + αvx < ∞.

Consequently wi < wi
ci− < ∞, and reduction ci− ∈ X̃ i is well-defined. Moreover,

wi
ci− − αvx + E

τ∑
t=0

βtζt(c
i−
t − eit) = E

∞∑
t=0

βtζt(c
i
t − αxt − eit) ≤ 0

where the last inequality holds since ci ∈ Bi
p + αx. It follows that ci− ∈ B̃i

p + αvxx̃.

Next fix ci ∈ X̃ i ∩ (B̃i
p + αvxx̃) in RF. Since ci ∈ X̃ i, one has cit > 0 for t = 0, . . . , τ .

Moreover, wi > wi, and by Lemma 1 solution to Program (14) exists {ci+t }∞t=τ+1 that are

strictly positive. It follows that extension ci+ ∈ X i is well-defined. Moreover,

E
∞∑
t=0

βtζt(c
i+
t − eit − αxt) = E

∞∑
t=τ+1

βtζt(c
i+
t − eit)− αE

∞∑
t=0

βtζtxt + E
τ∑

t=0

βtζt(c
i
t − eit)

≤ wi − αvx + E
τ∑

t=0

βtζt(c
i
t − eit) ≤ 0,

19



where the last inequality holds by the fact that ci ∈ B̃i
p + αvxx̃. Therefore, the extension of

the consumption profile satisfies ci+ ∈ Bi
p + αx. □

Step 2. We next demonstrate the equivalence of the two formulations in terms of optimal

choices.

Claim 2. Suppose ci is optimal in IH on set Bi
p ∩ X i. Then reduction ci− is well-defined

and optimal on B̃i
p ∩ X̃ i in RF. Conversely, if in RF ci is optimal on B̃i

p ∩ X̃ i then ci+ is

well-defined and optimal on Bi
p ∩X i in IH.

Proof of Claim 2:

Let ci be optimal on set Bi
p ∩ X i in IH. Since ci ∈ Bi

p ∩ X i, by Step 1 reduction is

well-defined and ci− ∈ B̃i
p ∩ X̃ i. Suppose ci− is not optimal on this set. This implies that

there exists yi ∈ B̃i
p ∩ X̃ i strictly preferred to ci−. By Step 1 extension yi+ is well-defined

and satisfies yi+ ∈ Bi
p ∩X i. Finally,

U i(yi+) =
∞∑
t=0

βtui(yi+t ) = vi(wi
yi) + E

τ∑
t=0

βtui(yit)

> vi(wi
ci−) + E

τ∑
t=0

βtui(ci−t ) ≥ E
∞∑
t=0

βtui(cit) = U i(ci),

where wi
yi and wi

ci− are the first components of vectors yi and ci−, respectively, and the

strict inequality holds by the fact that yi is strictly preferred to ci− in RF. This contradicts

optimality of ci on Bi
p ∩X i.

Let ci be optimal on set B̃i
p ∩ X̃ i in RF. Since ci ∈ B̃i

p ∩ X̃ i, by Step 1 extension is

well-defined and ci+ ∈ Bi
p ∩X i. Suppose ci+ is not optimal on this set. It follows that there

exists yi ∈ Bi
p ∩ X i strictly preferred to ci+. By Step 1 reduction yi− is well-defined and

satisfies yi− ∈ B̃i
p ∩ X̃ i. Finally,

Ũ i(yi−) = vi(wi
yi−) + E

τ∑
t=0

βtui(yit) ≥
∞∑
t=0

βtui(yit)

> E
∞∑
t=0

βtui(ci+t ) = vi(wi
ci) + E

τ∑
t=0

βtui(ciτ+1c
i
t) = Ũ i

(
ci
)

where the strict inequality holds by the fact that yi is strictly preferred to ci+ in IH. This

contradicts the optimality of ci on B̃i
p ∩ X̃ i in RF. □

Step 3. Finally, we demonstrate the equivalence of the frameworks in terms of equivalent

variation.
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Claim 3. Suppose equivalent variation EV i
p,p′ in IH is attained on zi. Then in RF equivalent

variation is attained on zi− and satisfies ẼV
i

p,p′ = vx×EV i
p,p′. Conversely, if in RF equivalent

variation ẼV
i

p,p′ is attained on zi, then in IH equivalent variation is attained on zi+ and

satisfies EV i
p,p′(β) = ẼV

i

p,p′/v
x.

Proof of Claim 3:

Suppose in IH equivalent variation α ≡ EV i
p,p′ is attained on zi. By definition of equivalent

variation zi ∈ Bi
p + αx and zi ∈ Ψi

p′ ⊂ X i. By Step 1 reduction zi− ∈ X̃ i is well-defined and

it satisfies zi− ∈ B̃i
p + αvxx̃. Let oi ∈ Ψp′ be an optimal choice in IH under policy p′. By

definition of upper countur set, U i(zi) ≥ U i(oi). By Step 2 reduction oi− is well-defined and

optimal under p′ in RF. Then

Ũ i(zi−) = vi(wi
zi−) + E

τ∑
t=0

βtui(zi−t ) ≥ E

∞∑
t=0

βtui(zit)

≥ E
∞∑
t=0

βtui(oit) = vi(wi
oi−) + E

τ∑
t=0

βtui(oi−t ) = Ũ i(oi−).

Consequently zi− ∈ Ψ̃i
p′ in RF. It follows that (zi−, αvx) satisfy constraints of Program (10)

within RF. Suppose that (zi−, αvx) does not solve this program. It follows that there exists

zi′ ∈ Ψ̃i
p′ ⊂ X̃ i in RF satisfying zi′ ∈ B̃i

p + α′vxx̃ for some α′ < α. By Step 1, extension to

IH of zi′+ ∈ X i is well-defined and satisfies zi′+ ∈ Bi
p +α′x. Next, let oi ∈ Ψ̃p′ be an optimal

choice in RF under policy p′. Then

U i(zi′+) =
∞∑
t=0

βtui(zi′+t ) = vi(wi
zi′) + E

τ∑
t=0

βtui(zi′t )

≥ vi(wi
oi) + E

τ∑
t=0

βtui(oit) =
∞∑
t=0

βtui(oi+t ) = U i(oi+),

and hence zi′+ ∈ Ψi
p′ in the IH problem. Thus (zi′+, α′) satisfies constraints of Program (10)

in IH and gives a smaller value, contradicting that (zi, α) is a solution to a minimization

problem. It follows that ẼV
i

p,p′ = vx × EV i
p,p′ .

Suppose equivalent variation ẼV
i

p,p′ is attained on zi in RF and let α ≡ ẼV
i

p,p′/v
x. By

the definition of equivalent variation, zi ∈ B̃i
p + αvxx̃ and zi ∈ Ψ̃i

p′ ⊂ X̃ i. By Lemma 1

extension zi+ ∈ X i is well-defined and satisfies zi+ ∈ Bi
p′ + αx. Let oi be an optimal choice

in RF under policy p′. By Lemma 2, extension oi+ is well-defined and optimal in IH under

p′ as well. Then

U i(zi+) = E

∞∑
t=0

βtui(zi+t ) = vi(wi
zi) + E

τ∑
t=0

βtui(zit)

≥ vi(wi
oi) + E

τ∑
t=0

βtui(oit) ≥ E

∞∑
t=0

βtui(oi+t ) = U i(oi+)
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which implies that zi+ ∈ Ψi
p′ in IH. It follows that (zi+, α) satisfy constraints of Program

(10) in IH. Suppose that (zi+, α) is not a solution to the problem in IH. It follows that there

exists zi′ ∈ Ψi
p′ ⊂ X i satisfying zi′ ∈ Bi

p′ + α′x for some α′ < α. By Lemma 1, reduction

of zi′ to RF, zi′− ∈ X̃ i is well-defined and satisfies zi′− ∈ B̃i
p′ + α′vxx̃. Let oi be an optimal

choice in IH under policy p′. By Lemma 2, reduction oi− is well-defined and optimal in RF

under p′ as well.

Moreover,

Ũ i
(
zi′−

)
= vi(wi

zi′−) + E
τ∑

t=0

βtui(zi′t ) = E
∞∑
t=0

βtui(zi′t )

≥ E
∞∑
t=0

βtui(oi+t ) = vi(wi
oi) + E

τ∑
t=0

βtui(oit) = Ũ i(oi−),

hence zi′− ∈ Ψ̃i
p′ in RF. Thus (zi′−, α′vx) satisfied constraints of Program (10) in RF and

attains a smaller value than ẼV
i

p,p′ = αvx, contradicting that zi, ẼV
i

p,p′ is a solution in the

reduced form problem. It follows that EV i
p,p′ = ẼV

i

p,p′/v
x. □

The three claims jointly imply the result in Lemma 2. □

Corollary 1. Fix β ∈ (0, 1). For any policies p, p′ ∈ Pτ equivalent variation in the reduced

form, ẼV
i

p,p′ problem is well-defined.

Proof of Corollary 1: In the infinite horizon problem pick x that pays one unit in τ + 1 and

zero otherwise. Note that vx = Eβτ+1ζτ+1 ∈ R++. By Proposition 1 equivalent variation is

well defined in IH. Then by Lemma 2 equivalent variation in the reduced form exists and is

equal to ẼV
i

p,p′ = EV i
p,p′ × vx.

A.4 Ordinal convergence

In this section we argue that the reduced form preferences (locally, on a compact box)

continuously transform into the quasilinear limits as consumers become patient. As a result

the indifference curves become aligned with the quasilinear ones. In the reduced form model

consider arbitrary compact box that gives a collection of measurable flows ci = (wi, {cit}τt=0)

defied as

X̃ i,b = {cit|wb ≤ wi < wb and cb ≤ cit ≤ cb for all t = 0, ..., τ},

where finite bounds satisfy wb < wb and 0 < cb < cb.

For β ∈ (0, 1) define weakly-better-than-ci correspondence, mapping Ψi : X i,b × [β, 1] ⇒
X i,b as follows:

Ψi(ci, β) ≡ {ci′ ∈ X i,b|ci′ ≿i
β ci},
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where preferences ≿i
β, for all β < 1 are represented by utility function (16). For β = 1

preferences ≿i
1 are given by the quasilinear utility

Ũ i,Q(ci) = λ̄iwi + E
τ∑

t=0

ui(cit), (18)

where λ̄i > 0 solves equality (2).

Observe that for some values of a discount factors, one might have, wb < wi and the

reduced-form preferences, and hence, the weakly-better-than-ci correspondence might not

be well-defined on the entire domain. The next lemma shows that for sufficiently patient

consumers, the correspondence is well-defined. Moreover, the result demonstrates that the

preferences continuously transforms into the quasilinear ones.

Lemma 3. There exists threshold β ∈ (0, 1), such that weakly-better-than-ci correspondence

Ψi : X i,b × [β, 1] → X i,b is well-defined and continuous on its domain (including at β = 1).

Proof of Lemma 3:

For considered policies fundamentals are not altered after period τ and so prices and

endowments follow the underlying Markov process. In particular, for any ht = {s0, s1, ..., st}
contingent prices and endowments are determined by a realization of a state in period t, i.e.,

ζht ≡ q(st) and eiht
= Ai(st)f

i(1). As a result, for all histories with the same last state are

equivalent in terms of contingent prices and endowments. Let π(t, s) be the unconditional

probability of all histories ht for which the realization of the Markov process in period t is

st = s (alternatively unconditional probability of state st = s in period t). For the considered

Markov chain, a transition matrix is diagonalizable with S independent eigenvectors and real

eigenvalues. The largest eigenvalue is equal to one, while other, possibly repeated, eigenvalues

m = 2, 3, ..., S satisfy |rm| < 1. It follows that the unconditional probability of s at t can be

written as π(t, s) = π̄s +
∑S

m=2 γm (rm)
t vm,s where π̄s denotes the stationary probability of

state s, derived from the eigenvector with the largest eigenvalue, vm,s is the s element of an

eigenvector corresponding to rm and γm is a constant that expresses the initial distribution

in terms of eigenvector basis.

Step 1. We first show that the borrowing constrain is not binding on the box, for
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sufficiently high discount factor. Consider the bound in the the borrowing constraint

wi ≡ −E
∞∑

t=τ+1

βtζte
i
t = −

∑
t≥τ+1

βt

S∑
s=1

π(t, s)q(s)Ai(s)f i(1)

= = −
∑
t≥τ+1

βt

S∑
s=1

[π̄s +
S∑

m=2

γm (rm)
t vm,s]q(s)A

i(s)f i(1)

= −
∑
t≥τ+1

βtE(q̄Āif i(1))−
S∑

m=2

S∑
s=1

γmvm,sq(s)A
i(s)f i(1)

∑
t≥τ+1

(rmβ)
t

= − βτ+1

(1− β)
E(q̄Āif i(1))−

S∑
m=2

rτ+1
m γmβ

τ+1 1

1− rmβ

S∑
s=1

vm,sq(s)A
i(s)f i(1).

By assumption Ai(s)f i(1) > 0 and q(s) > 0, for any s therefore E(q̄Āif i(1)) > 0 and the

first term in the equation converges to −∞ as β → 1. Since other eigenvalues are strictly

smaller than one, one has 1/ (1− rmβ) → 1/ (1− rm) < ∞ and therefore the second term

converges to a finite limit. It follows that limβ→1w
i = −∞ and there exists βw < 1 such that

for all β ∈ [βw, 1) the borrowing constraint is satisfied for all ci ∈ X i,b and correspondence

Ψi : X i,b × [βw, 1] ⇒ X i,b is well defined. In the next two steps we demonstrate that the

correspondence is continuous.

Step 2. In this step we give an auxiliary result in which we characterize the slope of the

value function vi(·). In terms of eigenvalues of the transition matrix, function η (β, λi) from

(15) can be written as

η
(
β, λi

)
≡ (1− β)E

∞∑
t=τ+1

βtζtu
i′−1(λiζt) = (1− β)

∞∑
t=τ+1

βt

S∑
s=1

π(t, s)q(s)ui′−1(λiq(s))

= (1− β)
∞∑

t=τ+1

βt

S∑
s=1

[π̄s +
S∑

m=2

γm (rm)
t vm,s]q(s)u

i′−1(λiq(s))

= (1− β)
∞∑

t=τ+1

βtE[q̄ui′−1(q̄λi)] + (1− β)
S∑

m=2

S∑
s=1

γmvm,sq(s)u
i′−1(λiq(s))

∑
t=τ+1

(rmβ)
t

= βτ+1E[q̄ui′−1(q̄λi)] +
S∑

m=2

ωm

S∑
s=1

vm,sq(s)u
i′−1(λiq(s)),

where corresponding weights ωm are given by

ωm ≡ γm(rmβ)
τ+1 1− β

1− rmβ
.

Since |rm| < 1, for m = 2, ..., S the weights are finite in a neighborhood of β = 1. Therefore,

the weights, as well as function η (β, λ) itself, are well-defined and differentiable with respect
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to β in the neighborhood of β = 1. Similarly, for arbitrary value wi ∈ R the constant on the

right hand side of equality (15) can be written as

(1− β)wi + βτ+1E(q̄Āif i(1)) +
S∑

m=2

ωm

S∑
s=1

vm,sq(s)A
i(s)f i(1).

For β = 1 condition (15) reduces to E(q̄ui′−1(q̄λi)) = E(q̄Āif i(1)) and is independent

of initial wealth. By the arguments analogous to the ones in Lemma 1, this equation has

unique solution denoted by λ̄i. Moreover, since ui′−1(·) is strictly decreasing, the derivative

∂η(1, λ̄i)/∂λi = E(q̄2ui′−1(q̄λ̄i)) < 0 is non-zero. By the implicit function theorem there

exists threshold βwi
< 1, a neighborhood of λ̄i, denoted by V and a continuous bijection

λwi
: [βwi

, 1] → V such that λwi
(β) is a unique solution to equation (15) for each β ∈ [βwi

, 1].

Note that by continuity of this function limβ→1 λ
wi
(β) = λwi

(1) = λ̄i for arbitrary value wi,

i.e., the family of bijections λwi
(·) for various wi has the same limit.

Step 3. Let β0, βwb , βwb be the thresholds from Step 2, derived for particular values of

wealth equal to 0, wb and wb respectively (recall that wb and wb are the bounds on wealth

that define box X i,b). Let functions λ0(·), λwb(·) and λwb(·) be the corresponding bijections.

Finally define β ≡ max{β0, βwb , βwb , βw} ∈ (0, 1) where the last element is defined in Step 1.

We next define a monotonic transformation of the reduced-form utility function, that

maps ˜̃U i : X i,b × [β, 1] → R as follows. For β ∈ [β, 1) let function ˜̃U i(ci, β) ≡ Ũ i (ci)− vi(0)

where the latter utility function is defined in (16). For β = 1 function is given by ˜̃U i (ci, 1) ≡
Ũ i,Q. Note that preferences represented by function ˜̃U i coincide with the ones represented

by Ũ i and hence the function defines correspondence Ψi.

We now show that the representation ˜̃U i(·, ·) is jointly continuous. Clearly, ˜̃U i (ci, β) is

jointly continuous for all ci, β ∈ X i,b × [β, 1) by the standard maximum theorem. Therefore

it suffices to verify joint continuity for the elements in the box for which β = 1. Consider

an arbitrary sequence {ci,h, βh}∞h=1 ⊂ X i,b × [β, 1] such that ci,h, βh → c̄, 1 ∈ X i,b × [β, 1].

By the envelope theorem, the derivative of the value function is given by the Lagrangian

multiplier ∂vi(0)/∂wi = λ0(β). Difference vi(wi)−vi(0) is strictly concave and it attains zero

at wi = 0. Hence, for any element of the sequence h = 1, 2, ... utility function is bounded

from above by

˜̃U i(ci,h, βh) ≤ max[λ0(βh)wi,h; λ̄iwi,h] + E
τ∑

t=0

(
βh

)t
ui(ci,ht ). (19)

For all β ∈ [β, 1] function λ0(β), is well-defined and continuous and hence limh→∞ λ0(βh) =

λ0(limh→∞ βh) = λ0(1) = λ̄i. It follows that both elements of the max function have the

same limit and limh→∞
˜̃U i

(
ci,h, βh

)
≤ λ̄iw̄ + E

∑τ
t=0 u

i(c̄it) =
˜̃U i (c̄i, 1).

By strict concavity of vi(·) for all values of wealth wi ∈ [wb, 0] value function satisfies

vi(wi)− vi(0) ≥ λwb(βh)wi, while for all wi ∈ [0, wb] one has v
i(wi)− vi(0) ≥ λwb(βh)wi and
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hence
˜̃U i(ci,h, βh) ≥ min[λwb(βh)wi,h;λwb(βh)wi,h; λ̄iwi,h] + E

τ∑
t=0

(
βh

)t
ui(ci,ht ) (20)

Each of the three elements of the min function has the same limit. Taking the limit gives

limh→∞
˜̃U i(ci,h, βh) ≥ λ̄iw̄i + E

∑τ
t=0 u

i(c̄it) =
˜̃U i (c̄i, 1). Limits of inequalities (19) and (20)

imply that limh→∞
˜̃U i

(
ci,h, βh

)
= ˜̃U i (c̄i, 1) and utility representation ˜̃U i is jointly continuous

on X i,b × [β, 1]. Since for all β ∈ [β, 1] preferences ≿i
β are strictly monotone and they admit

jointly continuous utility representation, by Lemma 1 in Weretka (2018b) weakly-better-

than-ci correspondence Ψi : X i,b × [β, 1] → X i,b is continuous. □

Define surplus function for consumer i as:

Si,τ (p) ≡
τ∑

t=0

E
[
ui(ui′−1(ζtλ̄

i))/λ̄i − ζtu
i′−1(ζtλ̄

i) + ζte
i
t)
]

(21)

Lemma 4. Fix τ < ∞. Consider arbitrary p, p′ ∈ Pτ . In the reduced problem with quasi-

linear preferences (18) equivalent variation is well-defined and given by

ẼV
i,Q

p,p′ = Si,τ (p′)− Si,τ (p) ∈ R.

Proof of Lemma 4:

In Step 1 we show that for the quasilinear preferences represented by Ũ i,Q(ci) optimal

choice and equivalent variation on the unrestricted domain X̃ i,Q ≡ {ci|wi ∈ R and cit >

0 for all t ≤ τ} are well-defined. For policy p′, optimal choice ci′ is uniquely defined by the

necessary and sufficient conditions: consumption in the event after history ht is given by

ci′ht
= ui′−1(λ̄iζ ′ht

) and consumption of wealth is determined from budget constraint wi
ci′ =

−E
∑τ

t=0 ζ
′
t(c

i′
t − ei′t ).

Next consider policies p and p′. Program (10) specializes to minzi,α α subject to two

constraints Ũ i,Q(zi) ≥ Ũ i,Q (ci′) and wi
zi−α+E

∑τ
t=0 ζt(z

i
t−eit) ≤ 0. With strictly monotone

preferences, both constraints must hold with equality. Solving the second equation for α and

plugging it into the objective function reduces the problem to

ẼV
i,Q

p,p′ = min
zi

wi
zi +

τ∑
t=0

Eζt
(
zit − eit

)
s.t. Ũ i,Q(zi) = Ũ i,Q(ci′). (22)

Solution to program (22), denoted by zi∗ is given by first order conditions: zi∗ht
= ui′−1(λ̄iζht)

and wi
zi∗ = wi

ci′ +
1
λ̄iE

∑τ
t=0(u

i(ci′t ) − ui(zi∗t )). Under Inada assumptions these conditions

define unique zi∗ ∈ X i,Q. Plugging zi∗, ci′ in objective function (22) gives

ẼV
i,Q

p,p′ = wi
ci′ + E

τ∑
t=0

ui(ci′t )− ui(zi∗t ))

λ̄i
+

τ∑
t=0

Eζt
(
zi∗t − eit

)
= E

τ∑
t=0

ui(ci′t )− ui(zi∗t ))

λ̄i
− E

τ∑
t=0

[ζtc
i′
t − ζtz

i∗
t ] + E

τ∑
t=0

[ζ ′te
i′
t − ζte

i
t],

= Si,τ (p′)− Si,τ (p).
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□

Lemma 5. Fix τ < ∞. Consider arbitrary p, p′ ∈ Pτ . Equivalent variation in the reduced

form economy converges to the quasiliner limit

lim
β→1

ẼV
i

p,p′ = ẼV
i,Q

p,p′ .

Proof of Lemma 5: We restrict attention to discount factors from [β, 1] as defined in

Lemma 3. We verify sufficient conditions for the convergence of the equivalent variation for

individual agent (Assumptions 2-3 in Weretka (2018b)) within the reduced-form problem.

First note that since τ < ∞, and S < ∞, a collection of all histories, ht such that t ≤ τ is fi-

nite. Consequently, box X̃ i,b can be reinterpreted as a subset of RN . The first order condition

is uniformly bounded partial derivatives of the budget constraint (17). For any history ht, one

has ∂b̃ip/∂c
i
ht

= πhtβ
tζht and ∂b̃ip/∂w

i = 1. Therefore, b ≥ ∂b̃ip/∂c
i
ht

≥ b and b ≥ ∂b̃ip/∂w
i ≥ b,

where bounds b ≡ max(1,maxht:t≤τ ζhtπht) < 0 and b ≡ min(1, (βi)τ minht:t≤τ ζhtπht) > 0 are

well-defined since τ < ∞ and S < ∞, and πht > 0 for all date-events ht. Thus, Assumption 2

is satisfied. In the reduced-form representation for each β ∈ [β, 1], preferences are strictly

convex on the respective domains X̃ i. In Step 1, we demonstrated that optimal choice and

equivalent variation for the quasilinear model (β = 1) are well-defined. Fix arbitrary convex

box X i,b such that the optimal choice and equivalent variation point with quasilinear pref-

erences are in the interior. For policy p and β ∈ [β, 1] function b̃ip(·, β) is linear in ci, and

hence it is quasi-convex. Finally, by Lemma 5 correspondence Ψi : X i,b × [β, 1] → X i,b is

continuous. By Proposition 1 in Weretka (2018b), equivalent variation in the reduced form

model satisfies limβ→1 ẼV
i

p,p′ = EV i,Q
p,p′ . □

We now specialize the results to truncations of policies. For a pair of policies p, p′ ∈ P
let EV i,τ

p,p′ be the equivalent variation for truncations of the policies to the first τ < ∞
periods, i.e., for periods t > τ perturbations for both policies are replaced by zero, i.e., the

endowments and prices follow the baseline Markov process. Consider x for which limβ→1 v
x ≡

v̄x ∈ R++.

Corollary 2. Fix τ < ∞ and p, p′ ∈ P. Equivalent variation for truncations of p, p′ policies

(point-wise, given τ) converges to a finite limit, i.e.,

lim
β→1

EV i,τ
p,p′ = EV i,Q,τ

p,p′ /v̄x ∈ R

where EV i,Q,τ
p,p′ is the equivalent variation in the quasilinear problem, for policies p, p′ truncated

to the first τ periods.

Proof of Corollary 2 : The result follows from Lemma 2 and 5, and the facts that truncations

of policies to the first τ periods are in Pτ .
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A.5 Convergence for general policies

Our next lemma shows that the the welfare index derived for the truncated policies approx-

imates well equivalent variation EV i
p,p′ when τ is sufficiently high.

Lemma 6. Fix arbitrary β ∈ (0, 1). Equivalent variation derived for truncated policies

converges, i.e.,

lim
τ→∞

EV i,τ
p,p′ = EV i

p,p′ ,

uniformly for β ∈ (β, 1).

Proof of Lemma 6: Fix arbitrary ε > 0. Pick τ for which

∆τ

1−∆
C

[
1 +

ζ

ζ

ui′(c)

ui′(c)

1

β

]
c̄+ ē+ ζ̄ + C∆

v̄x
≤ ε (23)

Since ∆ < 1, the corresponding τ exists and it does not depend on β. Consider arbitrary

β ∈ (β, 1).

Step 1. By ci denote a solution to problem (11) for policy p with transfer EV i
p,p′ , while c

i,τ

is a solution for truncation of this policy pτ with transfer EV i,τ
p,p′ . Suppose that ci is weakly

preferred to ci,τ (For the reverse preferences the argument is symmetric.) Under policy pτ

net cost of consumption flow ci is given by

E
∞∑
t=0

βtζτt (c
i
t − ei,τt ) = E

∞∑
t=0

βtζt(c
i
t − eit) (24)

+ E
∞∑

t=τ+1

βtζτt (c
i
t − ei,τt )− E

∞∑
t=τ+1

βtζt(c
i
t − eit)

≤ EV i
p,p′v

x + E
∞∑

t=τ+1

βt
[
|∆ζ

t |cit + |∆ζ
t |eit + |∆e

t |ζt + |∆e
t∆

ζ
t

]
≤ EV i

p,p′ v̄
x +

C∆τ

1−∆
(c̄+ ē+ ζ̄ + C∆),

For all τ ′ ≥ τ flow ci is affordable given the transfer and by assumption it is preferred to

solution to V i(pτ , EV i,τ
p,p′). Consequently, by (23) one has

EV i,τ
p,p′ ≤ EV i

p,p′ + ε.

Step 2. We next prove the other inequality. Let ci′ be a solution to (11) for policy p′

with no transfer. Using the arguments form Step 1 one can show that under policy pτ ′ the

net cost of the flow cannot exceed

E

∞∑
t=0

βtζτ ′t (c
i′
t − ei′τt ) ≤ C∆τ

1−∆
(c̄+ ē+ ζ̄ + C∆)
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Consequently V i(p′τ , C∆τ

1−∆
(c̄+ ē+ ζ̄ + C∆)/v̄x) ≥ V i(p′, 0). The difference in utility

V i(p, EV i
p,p′)− V̄ (pτ , EV i,τ

p,p′) = V i(p′, 0)− V i(p′τ , 0) (25)

≤ V i(p′τ , δ(τ))− V i(p′τ , 0)

≤ ui′(c)

ζ

C∆τ

1−∆
(c̄+ ē+ ζ̄ + C∆)

is bounded, where the first equality follows from (12) the inequality from the previous obser-

vation and the last inequality from the fact that the marginal utility of a dollar is bounded

from above by ui′(c)/ζ. On the other hand, for policy p for any γ > 0 within the considered

range the difference in utility is

V i(pτ , EV i,τ
p,p′ + γ)− V i(pτ , EV i,τ

p,p′) ≥ γ
βui′(c)

ζ
v̄x. (26)

Equating the two constants on the right hand sides of (25) and (26) gives

γ(τ) =
ζ

ζ

ui′(c)

βui′(c)

C∆τ

1−∆
(c̄+ ē+ ζ̄ + C∆)/v̄x (27)

for which V i(pτ , EV i,τ
p,p′ + γ(τ)) ≥ V i(p, EV i

p,p′). Applying the argument from Step 1 one can

show that the solution to problem (11) under policy pτ and transfer (EV i,τ
p,p′ + γ(τ))v̄x is

affordable under policy p with transfer (EV i,τ
p,p′ + γ(τ))v̄x + C∆τ

1−∆
(c̄+ ē+ ζ̄ +C∆) and it gives

higher utility than V̄ (p, EV i
p,p′). Consequently, by (23) one has

EV i
p,p′ ≤ EV i,τ

p,p′ + ε.

The inequalities derived in Steps 1 and 2 imply |EV i
p,p′ − EV i,τ

p,p′ | ≤ ε for all β ∈ (β, 1). □

A.6 Concluding argument

The following equality concludes the proof:

lim
β→1

EVp,p′
(1)
=

∑
i

lim
β→1

EV i
p,p′

(2)
=

∑
i

lim
β→1

lim
τ→∞

EV i,τ
p,p′ (28)

(3)
=

∑
i

lim
τ→∞

lim
β→1

EV i,τ
p,p′

(4)
=

∑
i

lim
τ→∞

ẼV
i,Q,τ

p,p′

v̄x
(29)

(5)
=

limτ→∞
∑

i[S
i,τ (p′)− Si,τ (p)]

v̄x
(6)
=

S(∆q′,∆Y ′)− S(∆q,∆Y )

v̄x
(30)

In (28) equality (1) follows from the definition of the aggregate equivalent variation and

the sum law for limits, and equality (2) from Lemma 6. In (3) the interchange of limits is
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justified by Moore-Osgood theorem along with Lemma 6 and Corollary 2. Equation (4) is

implied by Corollary 2 while (4) by follows from Lemma Lemmas 5 and the fact that policies

p, p′ truncated to the first τ periods are in Pτ . Replacing, prices and endowments from the

static model with the recursive counterparts gives gives (6). □
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