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1 Introduction

An important comparative statics result in mathematical economics, the maximum theorem

Berge (1963),1 shows that, in a maximization problem, whenever the utility function is jointly

continuous (in alternatives and parameters), and a budget correspondence is continuous,

then the value function of the program is continuous as well. This powerful result derives

the properties of a value function from the primitive structure of an optimization problem.

However, its usefulness in normative analyses is limited by the fact that it characterizes

a cardinal object that does not have any welfare interpretation in contemporary economic

theory.

This paper offers a modern, ordinal variant of the maximum theorem that reformulates

these assumptions in terms of underlying preferences; furthermore, it demonstrates the con-

tinuity of the classic welfare index that is measurable with respect to preferences, namely

the equivalent variations introduced by Hicks (1939), as well as, the choice correspondence.

Therefore, we call our result an ordinal theorem of the maximum. Utilizing examples we fur-

ther demonstrate that the Berge theorem’s assumptions, such as representation by a jointly

continuous utility or continuity of budget correspondence, by themselves, are insufficient for

our result to hold. Finally, we discuss the applications of the theorem to important economic

problems.

The paper contributes to the literature that extends the Berge theorem (Walker (1979);

Leininger (1984); Ausubel and Deneckere (1993)). These papers relax some of the continu-

ity requirements of the objective function and demonstrate upper hemicontinuity of choice

correspondence. The contribution of this paper is twofold. First, we identify the conditions

on a family of preferences, under which the ordinal welfare index is continuous. Second, in

the Berge Theorem, the argument for the upper hemicontinuity of a choice correspondence,

an ordinal object itself, is “tainted” by the assumption on a cardinal utility function. Our

preference-based formulation “purifies” this part of the argument, clarifying the sufficient

conditions in terms of preferences.

The paper proceeds as follows. Section 2 provides applications that illustrate the key

ideas. Section 3 defines an abstract problem, develops mathematical tools for the ordinal

continuity, and states the ordinal maximum theorem. Section 4 presents important examples

of applications of the theorem. Finally, Section 5 demonstrates that the assumptions of the

ordinal maximum theorem are tight.

1See, e.g., Ok (2007)
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2 Motivating Examples

In this section, we introduce two applications that illustrate the problem studied in the

paper. The applications share the following structure. A decision-maker chooses alternatives

x from two feasible subsets of space X ⊂ R2, determined in a factual (status quo) and a

counterfactual scenario. Following the literature, we use the terms scenarios and policies

interchangeably. We are interested in the impact of the counterfactual policy on welfare,

measured as an equivalent variation. The set(s) of feasible alternatives and preferences are

parametrized by θ. As a result, the equivalent variation depends on the parameter value.

When θ approaches some limit point, the respective indifference curves become perfectly

aligned with the limit ones. Similarly, the sets of feasible alternatives acquire the limit

shapes. The alignment of upper-contour and feasible sets results in the convergence of the

preference-based welfare. The existing economic theory lacks appropriate mathematical tools

to demonstrate such continuity of equivalent variation. The goal of this paper is to fill this

gap.

2.1 Consumer choice

We start with the classic problem of a consumer choosing a bundle of two commodities. The

consumer is effectively choosing among consumption profiles x ∈ X = [0, 100]2 to maximize

preferences parametrized by θ ∈ Θ = [0, 2], represented by an additively separable utility

U(x, θ) = u(x1, θ) + u(x2, θ), where individual utility function is iso-elastic,

u(xn, θ) =

x1−θn −1
1−θ if θ 6= 1

ln(xn) otherwise
. (1)

The set of feasible alternatives x is determined by the budget constraint
∑

n=1,2 ζn(xn −
en) ≤ 0, where ζ = (ζ1, ζ2) = R2

++ are prices of commodities and e = (e1, e2) is the initial

endowment of the two goods. Under factual policy p, prices are given by ζ = (1, 0.5) and

endowment is e = (0, 1). The counterfactual policy p′ increases the price for the second

commodity to ζ ′2 = 1.
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Figure 1. Portfolio Choice
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shifted F

The figure demonstrates the equivalent variation for θ = 0.5 in the consumer choice problem. Equivalent variation is given by

the distance between the factual budget line (solid line), and the parallel line that is tangent to the indifference curve attained

in the counterfactual scenario, along the 45o line (d = (1, 1)).
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Note: The figure demonstrates the indifference curves passing through points (0.5, 0.5) and (0.8,0.8) for different values of

θ = 0.5, 0.8, 1, 1.2, 1.5. In the neighborhood of θ = 1 the indifference curves transform continuously in a parameter value.
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Note: The figure demonstrates the evolution of equivalent variation in parameter value θ, in the neighborhood of one.
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Consider the behavior of the welfare index and choices in the neighborhood of θ = 1. The

utility function U : X ×Θ→ R is (jointly) continuous on its domain. Also, for each policy,

the set of feasible alternatives, (i.e., the budget set) is non-empty, compact, and independent

of θ. As a result, by the Maximum Theorem, the optimal choices and the value functions are

continuous in θ. Unfortunately, this result is not very useful in welfare comparisons. The

core tenet of modern economic theory is that satisfaction from the consumption of goods

cannot be measured effectively in cardinal units. For this reason, in an ordinal framework,

the welfare effect brought about by the counterfactual scenario is often measured in terms

of equivalent variation, Hicks (1939), a preference-based index defined as follows: Fix some

consumption bundle d ∈ X that gives a welfare numeraire. Equivalent variation, EVp,p′ , is a

sufficient transfer of d, making the factual policy equally as attractive as the counterfactual

one. Geometrically, equivalent variation is the smallest distance between the factual budget

set and the counterfactual upper contour set, along direction d. In Figure 1.A we depict the

equivalent variation for the riskless numeraire, d = (1, 1).

As we show in Figure 1.B., in the neighborhood of θ = 1, the consumer’s indifference

curves transform continuously into the ones derived from the logarithmic utility. The align-

ment of the upper contour sets, in turn, gives rise to the continuity of equivalent variation,

reported in the last column of Table 1 and depicted in Figure 1.C. The Maximum Theorem

characterizes cardinal values, and it does not apply to preference-based welfare. Moreover,

the theorem cannot be easily reformulated to establish the continuity of equivalent varia-

tion. In Example 2 in the next section, we show that the central assumption of the theorem

(i.e., the joint continuity of the utility representation) is too weak to guarantee the desired

continuity of the preference-based welfare.

Table 1. Consumer choice of and equivalent variation.

θ = −0.3 θ = −0.1 θ = −0.01 ln θ = 0.01 θ = 0.1 θ = 0.3

xp (0.21, 0.57) (0.24, 0.52) (0.25, 0.50) (0.25, 0.50) (0.25, 0.50) (0.26, 0.48) (0.27, 0.46)

xp′ (0.50, 0.50) (0.50, 0.50) (0.50, 0.50) (0.50, 0.50) (0.50, 0.50) (0.50, 0.50) (0.50, 0.50)

EVp,p′ 0.136 0.135 0.138 0.138 0.138 0.140 0.145

2.2 Labor-leisure choice with taxes

In the previous application, the trader’s preferences vary in θ, while the sets of feasible

alternatives are fixed polytopes. We now consider an example in which the set of feasible

alternatives is non-linear and parametrized by θ.
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Figure 2. Labor-Leisure Choice
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Note: The figure demonstrates the equivalent variation for θ = 0.7 in the portfolio choice application. Equivalent variation is

given by the distance between the factual budget curve (solid curve) and the shifter curve that is tangent to the indifference

curve attained in the counterfactual scenario, along the vertical line (d = (0, 1)).
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Note: The figure demonstrates the frontier of the feasible set for different values of θ = 0.7, 0.5, 0.3, 0. The frontier transforms

continuously in a parameter value.
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Note: The figure demonstrates the evolution of equivalent variation in parameter value θ.
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Consider a problem of a consumer choosing leisure x1 and consumption good x2 from

a compact box X = [0, 1]2. Preferences are represented by utility U(x) = lnx1 + lnx2.

The consumer is endowed with one unit of time, used for leisure and labor supply. Gross

labor income is given by i = w(1 − x1), where the real wage rate is equal to one, w = 1.

Under counterfactual policy labor income is subject to taxation. Consumption is equal to

net income x2 = (1 − τ) × i. As a result, the set of feasible alternatives is given by x ∈ X
that satisfy (1− τ)x1 +x2 ≤ 1− τ . The factual tax rate is progressive, τ = θi/(1 + i), where

θ ∈ Θ = [0, 0.5] is the maximal tax bracket. The counterfactual tax rate is zero: τ = 0.

Equivalent variation is measured in terms of the consumption good, d = (0, 1), which is the

minimal distance between the frontier of the factual feasible set and the shifted variant that

is tangent to the counterfactual indifference curve (see Figure 2.1).

For each policy, the correspondence that gives the collection of feasible bundles x is non-

empty, compact-valued, and continuous in θ. As a result, by the Maximum Theorem, the

corresponding optimal choices and value functions are continuous. In the next section, we

show that the properties of a feasible correspondence required in the theorem are also insuf-

ficient for the continuity (Example 3) or the existence (Example 4) of equivalent variation.

Still, as evident from Figure 1.B., small variations in the parameter value in the labor-leisure

choice problem generate only negligible perturbations of the feasible set of alternatives. As a

result, the minimal distance between the factual budget set and counterfactual upper counter

set, which gives equivalent variation, is continuous in θ; see Table 2 and Figure 2.C.

Table 2. Labor-leisure choice and equivalent variation.

θ = 0 θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5

xp (0.5, 0.5) (0.51, 0.48) (0.51, 0.46) (0.52, 043) (0.53, 0.41) (0.53, 0.39)

xp′ (0.50, 0.50) (0.50, 0.50) (0.50, 0.50) (0.50, 0.50) (0.50, 0.50) (0.50, 0.50)

EVp,p′ 0 0.016 0.031 0.046 0.060 0.073

3 An Ordinal Theorem of the Maximum

3.1 Equivalent variation

Consider an agent characterized by a parametric family of preferences {�θ}θ∈Θ over the

compact set of alternatives X ⊂ RN where parametric space Θ ∈ RM is compact. Policy p

determines a set of feasible alternatives that may depend on parameters θ. Mathematically,

a policy is represented by the feasibility correspondence Bp : Θ ⇒ RN . For p, a choice

7



correspondence xp : Θ⇒ X is defined in the standard way, namely, as2

xp (θ) ≡ {x ∈ Bp(θ) ∩X|x �θ y for all y ∈ Bp(θ) ∩X} ,

and the maximal upper contour correspondence, Ψ̄p : Θ⇒ X, is

Ψ̄p(θ) ≡ {y ∈ X|y �θ x for some x ∈ xp(θ)} .

Fix welfare numeraire d ∈ RN
+ , such that d 6= 0 and the parameter value θ. Consider a

factual policy p and the counterfactual one p′. Equivalent variation is a minimal (possibly

negative) transfer of numeraire, which makes the set of feasible alternatives under factual

policy Bp (θ) equally attractive as the counterfactual set Bp′ (θ). In an abstract decision

problem, this notion can be formalized as follows. Equivalent variation is given by the

solution to the following program

EVp,p′(θ) ≡ min
x∈X,τ∈R

τ, (2)

subject to

x ∈ Ψ̄p′(θ) and x ∈ Bp(θ) + τd.

In the general framework, equivalent variation is geometrically represented by a minimal

(signed) distance between the factual feasible set Bp(θ) and the counterfactual upper contour

set Ψ̄p′(θ), along vector d.3

Definition (2) naturally extends the Hicksian notion of equivalent variation for a consumer

problem to an abstract decision problem. It also reformulates the index in real terms. Our

definition highlights the fact that welfare is measurable with respect to preferences and sets

of feasible alternatives. The index is not affected by the normalization of utility or prices.

For d that coincides with the price numeraire (for the factual policy), our notion is equivalent

to the standard money metric index.

An alternative index, compensating variation, informs how much of flow d a consumer is

willing to sacrifice to not return to the factual policy once the counterfactual policy is imple-

mented. Formally, in terms of equivalent variation, compensating variation can be written

as CVp,p′ ≡ −EVp′,p. Consequently, the continuity of equivalent variation demonstrated in

the next section is straightforwardly applicable to the compensating variation.

2Note that the domain of correspondence Bp is RN . Correspondence Bp(θ) ∩ X ≡ {x ∈ Bp(θ)|x ∈ X}
for any θ ∈ Θ gives a set of available alternatives that are affordable.

3Note that, in the program that defines equivalent variation, optimization is over a tuple x, τ . This is

because equivalent variation is a minimal distance between the two sets, and x is an endpoint of the “arrow”

that determines this distance.
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3.2 Joint continuity of a family of preferences

We first formalize ordinal continuity in terms of a parameter in an abstract decision problem.

Intuitively, a family of preferences is continuous in θ whenever the associated upper counter

sets do not vary too much with the small perturbations of the parameter. More precisely,

for any convergent sequence of the parameter, contour sets do not implode or explode in the

limit. This property is captured by the continuity of the associated weakly-better-than-x

correspondence,

Ψ (x, θ) ≡ {y ∈ X|y �θ x} ,

that for any pair (x, θ), gives a collection of all alternatives that are at least as good as x

with respect to preferences �θ.

Definition 1. The family of preferences {�θ}θ∈Θ is jointly continuous on X ×Θ whenever

associated correspondence Ψ : X ×Θ⇒ X is continuous (i.e., upper and lower hemicontin-

uous.)

Before we derive the implications of ordinal continuity for the comparative statics of

choice and welfare, we find it insightful to relate our concept to the continuity of a utility

representation. Suppose a jointly continuous function, U : X × Θ→ R, represents a family

of preferences. It is then straightforward to show that the associated correspondence Ψ is

upper hemicontinuous (see proof of Lemma 1, Step 1). However, this correspondence may

fail to be lower hemicontinuous.

Example 1. Consider a set of alternatives X = [0, 4]2 and parametric space Θ = [0, 1]. For

a jointly continuous utility function

U(x, θ) = (1− θ)×min(x1, x2) (3)

at x̄ = (2, 2) and θ ∈ [0, 1) the upper contour set is Ψ (x̄, θ) = [2, 4]2. At θ = 1, this set

discontinuously expands to the entire box X and correspondence Ψ is not lower hemicontin-

uous.

The example shows that a representation of a family of preferences by a jointly contin-

uous utility function does not suffice for the joint continuity of preferences in the sense of

Definition 1. How about the implication in the other direction? Note that the joint continu-

ity of family {�θ}θ∈Θ implies a continuity of preferences �θ in x for each fixed value θ ∈ Θ.4

4For the singleton set Θ = {θ}, our notion of continuity is stronger than the standard definition of

the continuous preferences, according to which the weakly-better sets are closed. The latter condition is

implied by the upper hemincontinuity of Ψ(x) ≡ {y ∈ X|y %θ x}. The lower hemicontinuity imposes some

additional restrictions that, for example, rule out thick indifference curves. One can show that with the

additional structure on the set, X, the two notions are equivalent for strictly monotone preferences (see

Lemma 1).
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It then follows from Debreu’s theorem that any individual member of a family necessarily

admits a utility representation that is continuous in x. In fact, it can be shown that the

entire family of preferences that satisfies Definition 1 admits a representation that is jointly

continuous.5 Therefore, our notion of joint continuity of preferences is stronger than the

representation by a jointly continuous utility function.

We conclude this section with a simple test for the joint continuity of preferences. We

say that a set of alternatives X has a maximal element, if there exists x ∈ X such that

x ≤ x for all x ∈ X. The next lemma states a sufficiency condition for the continuity of a

weakly-better-than x correspondence.

Lemma 1. Suppose a convex set X has a maximal element, a parametric family of pref-

erences defined over X × Θ admits utility representation U : X × Θ → R that is jointly

continuous and that, for each θ ∈ Θ, the preferences are strictly monotone. Then, the

correspondence Ψ : X ×Θ⇒ X is thereby continuous.

One can verify continuity of the upper contour correspondence on e.g., a compact box

X = [0, 1]N , by providing a strictly increasing utility representation that is jointly continuous

in (x, θ) on the domain. For a family of preferences that can be represented by a jointly con-

tinuous utility function, such as (3), correspondence Ψ may fail to be lower hemicontinuous

due to thick indifference sets that potentially appear in a limit. Such sets are ruled out by

the assumption of the strict monotonicity of preferences.

3.3 The main theorem

An outstanding result in mathematical economics, the Maximum Theorem, Berge (1963),

shows that, whenever the utility function is jointly continuous, and the budget correspon-

dence is continuous, the value function of the program itself is continuous while, the choice

is upper hemicontinuous. This section offers a modern, ordinal variant of the theorem that

demonstrates the continuity of an equivalent variation. To this end, we make the following

assumption regarding a family of preferences and budget sets:

Assumption 1. Family {�θ}θ∈Θ is jointly continuous, and correspondences Bp∩X : Θ⇒ X

and Bp′ ∩X : Θ⇒ X are continuous and non-empty valued.

Furthermore, our theorem requires the budget set to have a well-behaved boundary.

For this purpose, we assume that feasible alternatives correspondence is derived from a

5The argument that supports the representation result is as follows. Define a preference relation � on

X × Θ by (x, θ) � (y, θ′) if θ = θ′ and x �θ y. By joint continuity of {�θ}θ∈Θ preference � is a close

subset of (X × Θ) × (X × Θ). Such a relation is known to admit a Richter-Peleg representation, that is a

continuous function u such that (x, θ) � (y, θ′) implies u(x, θ) ≥ u(y, θ′) and (x, θ) � (y, θ′). I am grateful

to an anonymous referee for formulating this argument.
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constraint, Bp (θ) ≡
{
x ∈ RN |bp (x, θ) ≤ 0

}
, where the function bp : RN × RM → R satisfies

the following assumption:6

Assumption 2. The following conditions hold:

1. Function bp is (jointly) continuous and strictly increasing,

2. For each θ ∈ Θ there exists τ+, τ− ∈ R such that

X ⊂ (Bp(θ) + τ+d) and X ∩ (Bp(θ) + τ−d) = ∅

.

Condition (2) in the assumption is technical. It requires that one can translate the budget

set along the vector d so that it includes all and none of the alternatives from the set X,

respectively. This is a joint condition on the function bp and the vector d. Note that the

condition can be easily verified in both problems considered in Section 2.

Importantly, Assumption 2 permits types of policies that define budget sets with kinks.

Consider, for example, the consumer problem from Section 2.1, in which a price of commodity

n = 1, 2 differs, depending on whether the consumer is buying or selling the good. In that

case, the corresponding function is

bp(x) =
∑
n=1,2

ζbn max(xn − en, 0) +
∑
n=1,2

ζsn min(xn − en, 0),

where ζbn, ζ
s
n > 0 is a buying and a selling price, respectively. Function bp is not differentiable,

and the slope of the budget set is not well defined at the endowment point. Still, the function

bp as well as the boundary of the budget set are continuous. As a result, the minimal distance

between the factual budget set and the counterfactual upper contour set is well defined, and

it changes continuously in θ. Other policies associated with non-smooth budget frontiers

include sales taxes with several tax brackets and rationing, among others.

The next lemma provides a test to verify Assumption 1 for feasible correspondences

Bp ∩ X : Θ ⇒ X that satisfy Assumption 2. We say that a set of alternatives X has a

minimal element, if there exists x ∈ X such that x ≥ x for all x ∈ X.

Lemma 2. Suppose convex set X has a minimal element, Bp(θ) ∩ X is non-empty for

any θ ∈ Θ, and function bp : RN × RM → R satisfies Assumption 2. Correspondence

Bp ∩X : Θ⇒ X is thereby continuous.

We now state the ordinal maximum theorem. In this result, we assume a family of

preferences {�θ}θ∈Θ over a compact set of alternatives X ⊂ RN and compact parametric

space Θ ∈ RM .

6I am grateful to an anonymous referee for suggesting the reformulation of the assumption in terms of

the translation condition.
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Theorem 1. (An Ordinal Theorem of the Maximum): Suppose Assumptions 1-2 hold.

Equivalent variation EVp,p′ : Θ → R is a well-defined continuous function, while choice

correspondences xp : Θ⇒ X and xp′ : Θ⇒ X are non-empty and upper hemicontinuous.

At a high level of abstraction, the continuity of equivalent variation can be understood

in terms of the geometry of the contour sets Ψ̄p′(θ) and of the function bp(·, θ). Given the

continuous weakly-better-than-x correspondence, for parameter values of θ close to θ̄, the

sets Ψ̄p(θ) cannot be too different in terms of shape from their limit at θ̄. Analogously,

budget sets are very similar to the limit set. It then follows that, for θ ' θ̄, the minimal

distance between these two sets, measured along direction d, should not be too different from

the same statistic evaluated at θ̄.

In many settings functions bp and hence the boundaries of budget sets are smooth. This

is, for example, the case in both problems considered in Section 2. For the applications with

smooth boundaries, the conditions of the theorem can be further simplified as follows:

Assumption 2’. Function bp is differentiable, and partial derivatives are bounded away from

zero, i.e., ∂bp/∂xn ≥ b > 0 for all n = 1, ..., N and (x, θ) ∈ RN ×Θ.

Under Assumption 2’, the function bp is (jointly) continuous and strictly increasing. In

the appendix, we also verify translation condition (2) in Assumption 2. This implies the

following:

Corollary 1. (Smooth boundry): Suppose Assumptions 1 and 2’ are satisfied. Theorem 1

holds.

4 Applications

In this section, we establish the existence and continuity of preference-based welfare in four

relevant economic applications. We first consider the general problems of a consumer’s and

producer’s choice. The third application considers a portfolio choice problem while the fourth

applications generalize labor-leisure example presented in Section 2.

4.1 Consumer’s problem

We now consider the classic consumer’s problem with N < ∞ commodities. Commodity

space is a compact box X = [0, x̄]N where x̄ > 0 is large. The consumer’s preferences are

represented by the continuous utility function U(x) that does not depend on the parameter

values. Feasible consumption profiles satisfy
∑N

n=1 θnxn ≤ θN+1 where θn for all n ≤ N gives

price of commodity n and θN+1 is income. Parametric space is a compact box Θ = {θ ∈

12



RN+1|α ≤ θn ≤ α for n = 1, ..., N + 1} for some 0 < α < α. In the factual scenario, prices

and income are fixed at some θ ∈ Θ. In the counterfactual scenario they are given by θ ∈ Θ.

Welfare numeraire is d ∈ RN
+/{0}.

Corollary 2. In the consumer’s problem, the equivalent (compensating) variation is a well-

defined and continuous function.

Proof: We verify assumptions of Corollary 1. Observe that X and Θ are non-empty

compact boxes. Feasible correspondence can be written as Bp (θ) ≡
{
x ∈ RN |bp (x, θ) ≤ 0

}
where bp(x, θ) =

∑N
n=1 θnxn−θN+1. Note that ∂bp/∂xn = θn ≥ α > 0 for all n = 1, ..., N and

(x, θ) ∈ RN×Θ. Consequently, Assumption 2’ is verified. Functions, bp and bp′ are continuous

in θ and, hence, by Lemma 2, correspondences Bp ∩ X : Θ ⇒ X and Bp′ ∩ X : Θ ⇒ X

are continuous. Also correspondences are non-empty valued as 0 ∈ Bp(θ) ∩X. Finally, the

family of preferences admits a representation that is continuous in x and independent from

θ. Hence, this representation is jointly continuous in x, θ. By Lemma 1 the correspondence

Ψ : X×Θ⇒ X is continuous—namely, the family of preferences is jointly continuous. Thus,

Assumption 1 holds. The result then follows from Corollary 1. �

4.2 Producer’s problem

We next look at the textbook problem of a producer choosing production plans from N -

dimensional input-output space, X ⊂ RN that is a large compact box. Production sets

differ in two scenarios. The factual set is given by Yp = {x ∈ RN |bp(x) ≤ 0} and the

counterfactual one is Yp′ = {x ∈ RN |bp′(x) ≤ 0}. Functions bp : X → R and bp′ : X → R
satisfy Assumption 2’ and Yp∩X and Yp′∩X are non-empty. The producer maximizes profit

U(x, θ) =
∑N

n=1 θnxn on X, where θn denotes the price of input xn. The parametric space

is Θ = {θ ∈ RN |α ≤ θn ≤ α for n = 1, ..., N} for some 0 < α < α. Welfare numeraire is

d ∈ RN
+/{0}.

Corollary 3. In the producer’s problem, the equivalent (compensating) variation is a well-

defined and continuous function.

Proof: As in the case of the consumer’s problem, X and Θ are non-empty compact boxes.

For each policy, the feasible correspondence can be written as Bp (θ) ≡
{
x ∈ RN |bp (x) ≤ 0

}
and it satisfies Assumption 2’. Functions bp and bp′ are independent from θ and they

are continous. By Lemma 2, correspondences Bp ∩ X : Θ ⇒ X and Bp′ ∩ X : Θ ⇒ X are

continuous. Finally, a family of preferences admits a representation that is jointly continuous

in x, θ and is strictly monotone. By Lemma 1, correspondence Ψ : X×Θ⇒ X is continuous,

meaning the family of preferences is jointly continuous. Thus, Assumption 1 holds. The

result then follows from Corollary 1. �
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4.3 Portfolio choice

We next formalize the continuity argument in the problem of portfolio choice. This ap-

plication is an extension of the example from Section 2.1. The trader is choosing random

consumption in N < ∞ states of the world. The preferences over consumption profiles

x ∈ X = [0, x̄]N . The trader has CRRA preferences represented by U(x, θ) = Eu(x, θ),

where the instantaneous utility function is given by (1). Policies determine Arrow prices

and endowment for which feasible consumption profiles satisfy a standard budget constraint∑N
n=1 ζn(xn−en) ≤ 0. Arrow prices and endowments in factual and counterfactual scenarios

are denoted by (ζ, e) and (ζ ′, e′), respectively. The fundamentals satisfy ζ, ζ ′ ∈ RN
++ and

e, e′, d ∈ RN
+/{0}. The portfolio choice problem is parametrized by relative risk aversion

θ ∈ Θ ⊂ R++, where Θ is a compact interval.

Corollary 4. In the portfolio choice problem, the equivalent (compensating) variation is a

well-defined and continuous function.

Proof: X and Θ are non-empty compact boxes. Feasible correspondence can be writ-

ten as Bp (θ) ≡
{
x ∈ RN |bp (x, ) ≤ 0

}
where bp(x) =

∑N
n=1 ζn(xn − en). It follows that

∂bp/∂xn = ζn ≥ minn ζn > 0 for all n = 1, ..., N and (x, θ) ∈ RN × Θ. Consequently, As-

sumption 2’ is verified. Functions, bp and bp′ are independent from θ, hence continuous. By

Lemma 2, correspondences Bp ∩ X : Θ ⇒ X and Bp′ ∩ X : Θ ⇒ X are continuous. Also

correspondences are non-empty valued as e ∈ Bp(θ) ∩X. Finally, the family of preferences

admits a representation that is continuous in x, θ. (For θ = 1, continuity can be easily es-

tablished using De L’Hopital rule.) The preferences are also strictly monotone for all θ. By

Lemma 1, the correspondence Ψ : X × Θ ⇒ X is continuous. The result then follows from

Corollary 1. �

The choice problem with Arrow securities is outcome-equivalent to the more general

framework with arbitrary securities traded in complete financial markets, in which asset

prices satisfy the no-arbitrage condition. Consequently, the corollary directly applies to

complete market settings with assets. Moreover, the result can be extended to incomplete

market problems.

4.4 Labor-leisure problem

Consider the labor-leisure problem from Section 2.2 generalized as follows. Preferences over

x ∈ X are represented by utility U(x) = u1(x1) + u2(x2) where the individual components

u1 and u2 are strictly increasing, are differentiable, and satisfy Inada conditions. The wage

rate can take arbitrary value w > 0. The counterfactual tax rate τ : R+ × Θ → [0, 1] is

continuous and satisfies

α < 1− τ(i, θ)− ∂τ ′(i, θ)/∂i < α,
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on its domain, for some positive constants α < α. This assumption ensures that consumption

x2 = [1− τ ]× i is increasing in gross income i and its derivative is bounded away from zero.

The parametric space is given by Θ ⊆ [0, 1].

Corollary 5. In the labor-leisure problem, the equivalent (compensating) variation is a well-

defined and continuous function.

Proof: X and Θ are non-empty compact boxes. The feasible correspondence can be

written as Bp (θ) ≡
{
x ∈ RN |bp (x, θ) ≤ 0

}
where bp(x, θ) = x2 − [1 − τ(i, θ)] × i and labor

income is an implicit function of leisure i = w(1 − x1).7 Then, ∂bp/∂x1 = [1 − τ(i, θ) −
∂τ ′(i, θ)/∂i]w and, hence, ∂bp/∂x1 ≥ αw > 0 and ∂bp/∂x2 = 1 > 0 for all (x, θ) ∈ X × Θ.

Consequently, Assumption 2’ is verified. Tax rates, and hence functions bp and bp′ , are

continuous in θ and by Lemma 2 correspondences Bp ∩X : Θ ⇒ X and Bp′ ∩X : Θ ⇒ X

are continuous. Also, the correspondences are not empty as endowment point x = (1, 0) is

feasible for any tax rule. Finally, preferences are independent of θ and are continuous in

x. Consequently, a family of preferences admits a representation that is continuous in x, θ.

Preferences are strictly monotone for all θ. By Lemma 1 correspondence Ψ : X ×Θ⇒ X is

continuous, meaning a family of preferences is jointly continuous and Assumption 1 holds.

The result then follows from Corollary 1. �

5 Tightness of the Assumptions

We next give three examples to demonstrate that the assumptions of the Berge Maximum

Theorem are insufficient for the continuity of equivalent variation and that our assumptions

are tight.8 In all the examples, we assume X = [0, 4]2 and Θ = [0, 1] in Figure 3. We first

show that our result does not hold when the joint continuity of preferences is replaced by

the representation of a jointly continuous utility.

Example 2. Consider a family of preferences represented by (3). In the previous section, we

have demonstrated that this jointly continuous utility function defines correspondence Ψ that

fails to be lower hemicontinuous. Consider constant budget correspondences, Bp(θ) = {x ∈
R2|x1+x2 ≤ 0} and Bp′(θ) = {x ∈ R2|x1+x2−4 ≤ 0} that satisfy Assumptions 1-2. Suppose

welfare numeraire is given by commodity one, d = (1, 0), so that the equivalent variation is

7The counterfactual tax rate is defined for i ≥ 0. However, one can extend the rate function to negative

values i < 0 so that the derivative of the function is continuous and bounded. The extension does not affect

normative predictions because, by Inada conditions, the consumption-leisure choice is interior.
8As a by-product, our proof also clarifies the implicit ordinal assumptions of the Maximum Theorem

that underlie the upper hemicontinuity of the choice correspondence. In the Appendix, we show this result

under the assumption that the weakly-better-than-x correspondence is upper but not necessarily lower

hemicontinuous (see proof of Lemma 3, Step 2).
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measured along horizontal axis. For all values θ ∈ [0, 1), counterfactual choice is (2, 2); the

upper contour set is Ψ̄p′ (θ) = [2, 4]2, and the minimal horizontal distance between this set

and factual budget set Bp(θ) is EVp,p′(θ) = 4. For θ̄ = 1 the upper contour set is given by

box Ψ̄p′(θ̄) = X, and the distance discontinuously drops to EVp,p′(θ̄) = 0. The corresponding

sets are depicted in Figure 3.A.

The continuity of the budget correspondence assumed by the maximum theorem is also

by itself insufficient for the continuity of the welfare index, even with jointly continuous

preferences.

Example 3. In this example consider a continuous factual budget correspondence Bp (θ) =

{x ∈ X|x1 = 1 or x2 = 2θ} that defines cross-shaped budget sets. Let the counterfactual cor-

respondence be given by a singleton Bp′(θ) = {2, 2} and the family of the preferences be

represented by utility function U(x, θ) = min (x1, x2) for which the counterfactual upper con-

tour set Ψ̄p′ (θ) = [2, 4]2 does not depend on θ. As it is clear from Figure 3.B., for any

θ ∈ [0, 1) the minimal signed horizontal distance between the upper contour set and the fac-

tual budget set is EVp,p′(θ) = 1 and the limit equivalent variation at θ̄ = 1 discontinuously

decreases to EVp,p′(θ̄) = −2. Assumption 2 eliminates such discontinuities of the welfare

index.

Finally, the equivalent variation may fail to exist in settings with jointly continuous

preferences and a continuous boundary function, when the translation condition (2) in As-

sumption 2 is not satisfied. Note, that the example also violates alternative Assumption 2’

as partial derivatives of the function bp are not bounded away from zero.

Example 4. In the previous example replace the factual budget set with the set derived from

the budget constraint function

bp (x, θ) =

−(x1 − 3)(x2 − 2) + 1 if x ≤ (3, 2)

b̃p otherwise
.

where b̃p is an arbitrary strictly increasing and differentiable extension of the function −(x1−
3)(x2 − 2) + 1 for x /∈ {y ∈ R2|y ≤ (3, 2)}.9 As we show in Figure 3.C., even though the

budget set has a smooth boundary, with counterfactual upper contour set Ψ̄p′ (θ) = [2, 4]2 an

equivalent variation is not well-defined for any θ.

9Note that the extension takes values above one and, hence, is inconsequential for the shape of the budget

set.
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Figure 3. Failures of the Ordinal Maximum Theorem
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Note: The figure demonstrates the failure of the ordinal maximum theorem due to a lack of lower hemicontinuity of correspon-

dence Ψ. The left panel shows the counterfactual upper contour set Ψ̄p′ (θ) (shaded area) and the factual budget set Bp(θ) (the

area south-west of the solid blue line) for θ ∈ [0, 1). The minimal horizontal distance between the sets is 4. The panel on the

right shows the analogous sets for θ̄ = 1. Due to the discontinuous “explosion” of the upper contour set, the distance between

sets drops to zero.
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Note: The figure demonstrates the necessity of a smooth downward-slopping boundary of budget sets. The cross-shaped budget

set consists of the horizontal and vertical lines. For each θ ∈ [0, 1) the horizontal part of the budget set is below set Ψ̄p′ (θ) and,

thus the minimal horizontal distance between the two sets is determined by the vertical part and is equal to one (left panel).

In the limit θ̄ = 1, the horizontal part of the budget set becomes relevant, and the signed minimal horizontal distance is −2.
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Note: The figure demonstrates the non-existence of the equivalent variation due to the unbounded derivatives of bp (·, θ). As

it is clear from the picture, no horizontal shift of a budget set allows for the attainment of a point in Ψ̄p′ (θ) and equivalent

variation is not well-defined.
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Appendices

A Tests of continuity

We first offer the proofs of the cardinal/nominal tests of continuity for the relevant correspondences.

Proof of Lemma 1: The proof consists of two steps: showing upper and lower hemicontinuity.

Step 1. In this step we show upper hemicontinuity. Consider an arbitrary convergent sequence

in X × Θ × X, denoted by zh, θh, yh → z̄, θ̄, ȳ, such that yh ∈ Ψ(zh, θh) for each h = 1, 2, ....

Preferences admit a utility representation, for which U(yh, θh) ≥ U(zh, θh). By joint continuity of

U , the inequality is preserved in the limit and U(ȳ, θ̄) ≥ U(z̄, θ̄), which implies ȳ ∈ Ψ(z̄, θ̄).

Step 2. In this step we show lower hemicontinuity. Consider convergent sequence zh, θh → z̄, θ̄

in X × Θ and ȳ ∈ Ψ(z̄, θ̄). Note that utility function satisfies U(ȳ, θ̄) ≥ U(z̄, θ̄). We consider two

cases. Suppose first that the limit point is the maximal element, i.e., ȳ = x. Define subsequence

yk = x for all k = 1, 2, ... and zk, θk ≡ zh(k) , θh(k) where h(k) = k. Since by strict monotonicity

U(yk, θ) = U(x, θ) ≥ U(x, θ) for all (x, θ) ∈ X × Θ, so yk ∈ Ψ(zk, θk), and yk → x = ȳ, which

completes the argument.

Suppose now that ȳ < x. Define sequence of yk as follows. For any k let yk ≡ αkȳ+
(
1− αk

)
x >

ȳ where αk is large enough so that ‖yk − ȳ‖ ≤ 1/k and hence yk → ȳ. By strict monotonicity,

U(yk, θ̄) > U(ȳ, θ̄) ≥ U(z̄, θ̄). Define the subsequence zk, θk ≡ zh(k) , θh(k) as follows. For k = 1

choose index h(1) such that U(y1, θh(1)) > U(zh, θh(1)) is satisfied. Note that such an element

exists since zh, θh → z̄, θ̄, and the strict inequality is preserved by the fact utility function is jointly
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continuous. Call it zh(1), θh(1). Repeat this step for k = 2, 3, ..., each time selecting an element h(k),

given by zh(k) , θh(k) , from the sequence truncated to h = h(k−1) + 1, ... elements. By construction,

yk → ȳ and yk ∈ Ψ(zk, θk). �

Proof of Lemma 2 : The proof consists of two steps: showing upper and lower hemicontinuity.

Step 1. In this step we show upper hemicontinuity. Consider arbitrary convergent sequence in

Θ×X, denoted by θh, yh → θ̄, ȳ, such that yh ∈ Bp(θh) ∩X for each h = 1, 2, .... By definition of

feasible correspondence bp(y
h, θh) ≤ 0. By joint continuity of bp, the inequality is preserved in the

limit and bp(ȳ, θ̄) ≤ 0, which implies ȳ ∈ Bp(θ̄) ∩X.

Step 2. In this step we show lower hemicontinuity. Consider a convergent sequence θh → θ̄ in

Θ and ȳ ∈ Bp(θ̄)∩X. By definition of feasible correspondence, bp(ȳ, θ̄) ≤ 0. We consider two cases.

Suppose first the minimal element ȳ = x. Define constant sequence yk = x for all k = 1, 2, .... Since

Bp(θ
k)∩X is non-empty, there exists x ∈ X for which bp(x, θ

h) ≤ 0. Since x ≤ x, bp(x) ≤ bp(x) ≤ 0

and hence yk ∈ Bp(θk) ∩X and yk → x = ȳ, which completes the argument.

Suppose now that ȳ > x. For k = 1, 2, ..., let yk ≡ αkȳ +
(
1− αk

)
x < ȳ where αk is large

enough so that ‖yk − ȳ‖ ≤ 1/k. By construction, yk → ȳ. For any k, by strict monotonicity in the

first argument, bp(y
k, θ̄) < b(ȳ, θ̄) ≤ 0. Define subsequence θk ≡ θh(k) as follows. For k = 1 choose

index h(1) such that bp(y
k, θh(1)) < 0 is satisfied. Note that such element exists since θh → θ̄, and

the strict inequality is preserved by the fact that bp function is jointly continuous. Call it θh(1) .

Repeat this step for k = 2, 3, ... each time selecting element θh(k) from the sequence truncated to

h = h(k−1) + 1, ... elements. By construction, yk → ȳ and yk ∈ Bp(θk) ∩X.

B Main Theorem and Corollary

Proof of Theorem 1:

Throughout the proof, we fix policies and welfare numeraire p, p′, d and use the shorthand

notation EV = EVp,p′ . By z : Θ ⇒ X we denote the correspondence that for each θ ∈ Θ gives all

the alternatives z ∈ X for which tuple (z, τ) solves the program (2).

The proof of the theorem proceeds as follows. In Lemma 3 we demonstrate the existence and

the continuity of the choice correspondence. Lemma 4 shows that the equivalent variation is well-

defined for any parameter value and policy pair, and that it is attained on a compact set. Lemma 5

demonstrates the continuity of the equivalent variation on a parametric space.

Lemma 3. For any p, the correspondence xp : Θ⇒ X is non-empty valued and upper hemicontin-

uous.

Proof of Lemma 3:

Step 1. Non-empty valuedness of the correspondence xp : Θ⇒ X. Fix θ ∈ Θ. For any x ∈ X,

the sets {y ∈ X|y �θ x} and {y ∈ X|x �θ y} are closed; otherwise, there would exist convergent

sequences in X, xh, yh → ȳ, x̄ such that xh �θ yh but ȳ �θ x̄, contradicting upper hemicontinuity

of Ψ (that is equivalent to the property of a closed graph, given compact X). Thus, preferences
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�θ are continuous for all θ ∈ Θ. By the Debreu representation theorem, preferences �θ admit a

utility representation continuous in x for each θ. Set Bp(θ) is a preimage of a closed interval by a

continuous function bp(·, θ), and hence it is closed. Thus, Bp(θ)∩X is compact. By Assumption 1,

it is also non-empty. It then follows from the extreme value theorem that the optimal choice is

attained on Bp(θ) ∩X and the choice correspondence xp : Θ⇒ X is non-empty valued.

Step 2. Upper hemicontinuity of xp : Θ ⇒ X: Consider a convergent sequence xh, θh → x̄, θ̄

for which xh ∈ xp(θ
h). Since Bp(θ) ∩ X is upper hemicontinuous, it has a closed graph and

therefore x̄ ∈ Bp(θ̄) ∩ X. Consider any alternative ȳ ∈ Bp
(
θ̄
)
∩ X and any arbitrary sequence

yh, θh → ȳ, θ̄. Since by Assumption 1 correspondence Bp(·)∩X is lower hemicontinuous, there exists

convergent subsequence yk, θk → (ȳ, θ̄) such that yk ∈ Bp
(
θk
)
∩ X. By optimality, xk ∈ xp(θk)

and yk ∈ Bp
(
θk
)
∩ X; therefore, one has xk ∈ Ψ

(
yk, θk

)
. Since Ψ is upper hemicontinuous with

compact range, it has closed graph and x̄ ∈ Ψ
(
ȳ, θ̄
)
. This in turn implies x̄ �θ̄ ȳ. This is true

for all ȳ ∈ Bp
(
θ̄
)
∩ X and x̄ ∈ xp

(
θ̄
)
. Note that continuity of xp′ : Θ ⇒ X holds by identical

arguments.

�

In the next lemma we show that equivalent variation is well-defined.

Lemma 4. Equivalent variation exists and is uniformly bounded.

Proof of Lemma 4: Fix θ̄ ∈ Θ. Define the closed interval Q ≡ [τ−, τ+] ⊂ R, where the corre-

sponding endpoints are from Assumption 2. By point (1) of this assumption, the set Bp(θ) + τd

is increasing in τ . Therefore from point (2) of the same assumption it follows that τ− < τ+ and

interval Q ≡ [τ−, τ+] ⊂ R is non-empty. We first show that Program 2, augmented by additional

constraint τ ∈ Q, has a solution. Then we demonstrate that the constraint is not binding, and so

the solution to the restricted program defines equivalent variation.

Let

A ≡
{

(z, τ) ∈ X ×Q|z ∈ Bp(θ̄) + τd
}
,

and

B ≡ {(z, τ) ∈ X ×Q|z ∈ Ψ̄p′(θ̄)}.

Program 2 augmented by constraint τ ∈ Q can be reformulated as min τ subject to (z, τ) ∈ A∩B ⊂
RN+1. Set A is closed (by continuity of bp and closeness of X ×Q) and bounded (by boundedness

of X × Q). Similarly, set B is closed (by closeness of X,Q and continuity of preferences) and

bounded (by boundedness of X × Q). It follows that A ∩ B ⊂ RN+1 is compact. Pick arbitrary

z ∈ xp′(θ̄), that by Lemma 3 is well defined. Note that z ∈ Ψ̄p′(θ̄) and hence z ∈ X. It follows

that (z, τ+) ∈ B. Moreover, by point (2) of Assumption 2, one has z ∈ X ⊂ Bp(θ̄) + τ+d, hence

(z, τ+) ∈ A. It follows that (z, τ+) ∈ A∩B, i.e., the set A∩B is non-empty. By the extreme value

theorem, a solution to the program exists and is attained on set A ∩ B. Denote it by z̄, τ̄ . Note

that the constraint τ ∈ Q is not binding since A∩B = ∅ for all τ ≤ τ− and A∩B = B is constant

for all τ ≥ τ+.
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The two observations imply that (z̄, τ̄) is a solution to unrestricted Program 2. Since minimum

takes at most one value, equivalent variation EV (·) is a well-defined function on Θ. �

We next prove continuity of equivalent variation.

Lemma 5. Equivalent variation is continuous.

Proof of Lemma 5:

Suppose that, for some θ̄ ∈ Θ, equivalent variation is not continuous. This implies that there

exists ε > 0 such that for any δ > 0 one can find θ satisfying
∥∥θ − θ̄∥∥ < δ for which either

EV (θ) ≥ EV
(
θ̄
)

+ ε or EV (θ) ≤ EV
(
θ̄
)
− ε. This in turn implies that there exists sequence

θh → θ̄ in Θ for which either EV
(
θh
)
≥ EV (θ̄) + ε or EV

(
θh
)
≤ EV (θ̄) − ε for all h = 1, 2, ....

We argue that this is an impossibility.

Step 1. Upper bound. Suppose there exists a sequence θh → θ̄ and ε > 0 such that EV
(
θh
)
≥

EV
(
θ̄
)

+ ε for all h. Pick an arbitrary xh ∈ xp′
(
θh
)
. Note that by Lemma 3, the set xp′

(
θh
)

is

non-empty so such xh exists. For any θh, the maximal upper contour set attainable under p′ can

be written as Ψ̄p′
(
θh
)

= Ψ
(
xh, θh

)
. Since xh ∈ X, and X is compact, there exists a convergent

subsequence θk, xk → θ̄, x̄. By Lemma 3, correspondence xp′(·) is upper hemicontinuous and by

compactness of X it has a closed graph. This implies that x̄ ∈ xp′
(
θ̄
)
. The maximal upper contour

set at θ̄ is given by Ψ̄p′
(
θ̄
)

= Ψ
(
x̄, θ̄
)
.

Consider the convergent sequence θk, xk → θ̄, x̄, defined in the previous paragraph. Let z̄, τ̄ ∈
X × Q be a solution to the program that defines equivalent variation at θ̄. By Lemma 4, such

solution exists. By definition of equivalent variation, z̄ = Ψ
(
x̄, θ̄
)

and z̄ − dτ̄ ∈ Bp
(
θ̄
)
. Since by

Assumption 1 correspondence Ψ is lower hemicontinuous, there exists a subsequence xl, θl → x̄, θ̄

and zl → z̄ such that zl ∈ Ψ
(
xl, θl

)
= Ψ̄p′

(
θl
)

for all l. For each m = 1, 2, ... let τm ≡ τ̄ + 1/m.

By condition (1) in Assumption 2 one has bp(z̄ − τmd, θ̄) < 0 for all m. By joint continuity of

bp there exists an increasing sequence of natural numbers Lm such that bp(z
l − τmd, θl) < 0 for

Lm ≤ l < Lm+1. For any m let (zm, θm) ≡ (zl, θl) where Lm ≤ l < Lm+1. By construction

zm ∈ Bp(θm) + τmd and zm = Ψ̄p′ (θ
m) for all m. Hence, τm ≥ EV (θm) ≥ EV

(
θ̄
)

+ ε, which is a

contradiction since τm → τ̄ = EV (θ̄).

Step 2. Lower bound: Suppose there exists a sequence θh → θ̄ and ε > 0 such that EV
(
θh
)
≤

EV
(
θ̄
)
− ε for all h. For each h, pick arbitrary xh ∈ xp′

(
θh
)

and zh, τh ∈ X × Q that solves

Program 2. By Lemmas 3 and 4, such sequences exist. Since xh, zh ∈ X and τh ∈ Q for all h, and

these sets are compact, sequence xh, zh, τh has a convergent subsequence xk, zk, τk → x̄, z̄, τ̄ where

x̄, z̄ ∈ X and τ̄ ∈ Q. By definition of equivalent variation, for every k, zk ∈ Ψ̄p′
(
θk
)

= Ψ
(
xk, θk

)
and zk ∈ Bp

(
θk
)

+ τkd. By Assumption 1, z̄ ∈ Ψ
(
x̄, θ̄
)

= Ψ̄p′
(
θ̄
)

and z̄ ∈ Bp
(
θ̄
)

+ τ̄ d. Thus, pair

z̄, τ̄ satisfies constraints in Program 2 at θ̄. Hence,

lim
k→∞

EV (θk) = lim
k→∞

τk ≡ τ̄ ≥ EV
(
θ̄
)
.

Therefore, equivalent variation evaluated at θ̄ is the lower bound for the limit of the subsequence

EV
(
θk
)
. This in turn contradicts proposition EV

(
θh
)
≤ EV

(
θ̄
)
− ε for all n given fixed ε > 0.�
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Proof of Corollary 1 :

Under alternative Assumption 2’, the function bp is differentiable and hence is (jointly) contin-

uous. Since the partial derivatives are strictly positive, the function is strictly increasing. We next

verify the translation condition, (2), in Assumption 2. Fix θ ∈ Θ.

Step 1. Existence of τ+: Define x̄ = (x̄1, ..., x̄N ) ∈ RN as x̄n = maxx∈X xn for any n. Observe

that X ⊂ {x ∈ RN |x ≤ x̄}. If bp (x̄, θ) ≤ 0 let τ+ ≡ 0. By the monotonicity of the function bp, for

any x ∈ X, bp (x, θ) ≤ bp (x̄, θ) ≤ 0. Therefore X ⊂ (Bp(θ) + τ−d). Next suppose bp (x̄, θ) > 0. Let

τ+ ≡ bp (x̄, θ) /(b
∑N

n=1 dn) > 0. By the mean value theorem,

bp (x̄, θ)− bp
(
x̄− τ+d, θ

)
≥ (b

N∑
n=1

dn)τ+ = bp (x̄, θ) , (4)

hence bp (x̄− τ+d, θ) ≤ 0. By the monotonicity of the function bp, for any x ∈ X, bp (x− τ+d, θ) ≤ 0

and hence x ∈ Bp(θ) + τ−d. This implies X ⊂ (Bp(θ) + τ−d).

Step 2. Existence of τ−: Define x = (x1, ..., xN ) ∈ RN as xn = −1 + minx∈X xn for any n.

Observe that X ⊂ {x ∈ RN |x >> x}. If bp (x, θ) ≥ 0 let τ− ≡ 0. By the strict monotonicity of the

function bp, for any x ∈ X, bp (x, θ) > bp (x, θ) ≥ 0. Therefore X ∩ (Bp(θ) + τ−d) = ∅.
Next suppose bp (x, θ) < 0. Let τ− ≡ bp (x, θ) /(b

∑N
n=1 dn) < 0. By the mean value theorem,

bp (x̄, θ)− bp
(
x̄− τ−d, θ

)
≤ (b

N∑
n=1

dn)τ− = bp (x̄, θ) , (5)

hence bp (x̄− τ−d, θ) ≥ 0. By monotonicity of function bp, for any x ∈ X, bp (x− τ−d, θ) > 0 and,

hence, x /∈ Bp(θ) + τ−d. This implies X ∩ (Bp(θ) + τ−d) = ∅. �
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