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1 Introduction

Governments often redistribute by allocating direct cash transfers. A natural concern that

arises in these contexts is whether financial aid is received by those most in need. Although

some basic information about potential recipients may be available to public agencies, many

of the relevant characteristics—the detailed financial situation, family circumstances, labor

market opportunities—remain unobserved. When these characteristics cannot be easily ver-

ified, governments can attempt to improve targeting by requiring applicants to engage in

“ordeals”—such as queuing or filling out forms—that may help screen out those who are

not in need. For example, Alatas et al. (2016) show that targeting can be improved by

imposing the ordeal of traveling to a registration site in the design of Indonesia’s Condi-

tional Cash Transfer program.1 However, ordeals—by definition—can be burdensome, and

they decrease the utility of the recipients without offering any direct social benefit. As a

result, governments may choose to forgo any screening. For example, the US government dis-

tributed monetary support during the Covid-19 pandemic by mailing checks, imposing only

crude eligibility criteria based on income.2 These contrasting examples motivate the basic

question that this paper addresses: When is it optimal to use costly screening to improve

the targeting of financial aid?

To answer this question, I consider the following redistribution problem. A designer al-

locates a fixed amount of money to a population of agents differing in privately observed

marginal values for money (that capture designer’s redistributive preferences). Absent ad-

ditional tools, the designer would not be able to achieve any screening in an incentive-

compatible mechanism—she could only offer a lump-sum transfer. However, I allow the

designer to award a higher amount of money to agents who “burn” some utility by com-

pleting an ordeal—an activity that is costly for the person engaging in it and that does not

directly benefit anyone. The designer can offer different amounts of money for completing

ordeals of varying difficulty. Any ordeal entails a pure social waste since, by definition, its

direct consequence is to impose a cost on the recipient (with the cost being increasing in

difficulty). However, if agents with higher marginal values for money self-select into more

difficult ordeals, the designer can potentially achieve a better allocation of money. This leads

to an equity-efficiency trade-off.

The main result establishes that, under regularity conditions, offering more money for

completing an ordeal outperforms the lump-sum transfer mechanism if agents with the lowest

money-denominated cost of engaging in the ordeal have an expected value for money that

exceeds the average value for money by more than a factor of two. When agents’ utilities

are quasi-linear, under further regularity assumptions, this condition becomes necessary

1See Rose (2021) and Zeckhauser (2021) for other practical examples of using ordeals for targeting.
2See, for example, Falcettoni and Nygaard (2020) and Nygaard, Sorensen, and Wang (2020).
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for optimality of using ordeals to allocate money; moreover, a simple ordeal mechanism—

with a single difficulty level—is optimal among all incentive-compatible and budget-balanced

mechanisms, provided that the designer’s budget is sufficiently large.

I offer a straightforward intuition for the optimality condition. The key observation is

that—under quasi-linear preferences—half of every dollar allocated to the lowest-cost agents

under an ordeal mechanism gets “burned” in the process of screening. Specifically, if the

designer perturbs the lump-sum mechanism by offering ϵ more money for completing an

ordeal (with difficulty normalized to 1), only agents whose cost is below ϵ will choose to do

so. When ϵ is small, the average cost paid by such agents is approximately ϵ/2. Thus, the

expected marginal value for money for agents who receive the extra ϵ of money (the ones

with the lowest costs) must exceed the average value for money (the opportunity cost) by a

factor of two for the ordeal mechanism to increase welfare. While the baseline model does not

assume that agents’ preferences are quasi-linear in money, utilities are approximately quasi-

linear over mechanisms that offer a small additional payment for completing the ordeal. As a

result, even though the optimal mechanism in the non-quasi-linear model may be difficult to

characterize, the condition for optimality derived in the quasi-linear model remains sufficient

for optimality of some ordeal mechanism.

My framework delivers a simple test of optimality of using ordeals to allocate financial aid.

Existing theoretical literature on this topic acknowledges the existence of a trade-off between

targeting and efficiency but, to the best of my knowledge, has not provided an empirically

testable condition for the optimality of using ordeals. The condition derived in this paper

depends solely on the properties of the joint distribution of costs and values for money and

can be verified once values for money are tied to an empirically observable quantity (such as

income or wealth). In contexts where governments already rely on observable information to

identify those in need of financial aid, the condition—applied to the distribution of costs and

values conditional on observables—determines whether outcomes can be improved by adding

an additional layer of targeting associated with costly screening.3 For developing countries

with scarce data on potential recipients of financial aid, the condition sheds light on the

desirability of targeting through ordeals relative to other methods such as community-based

targeting or data acquisition that can be costly to implement.4

Connections to the literature. The equity-efficiency trade-off lies at the core of public

economics. Classical papers, such as Mirrlees (1971), Diamond and Mirrlees (1971), and

Atkinson and Stiglitz (1976), provided frameworks for studying welfare-maximizing alloca-

tions under informational constraints in relatively complex environments, where closed-form

3For example, see Deshpande and Li (2019) for a discussion of the effects of costly screening on targeting
in allocating disability insurance and Naik (2024) for an analysis of how barriers in applying for financial aid
may disproportionately screen out agents with poor mental health.

4See, for example, Banerjee, Duflo, and Sharma (2021) and Trachtman, Permana, and Sahadewo (2022).
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solutions are generally not available. Weitzman (1977) studied the trade-off in the sim-

pler context of allocating a single good and showed that random allocation may sometimes

outperform the market allocation.5 Most closely related is the work by Nichols and Zeck-

hauser (1982) and Besley and Coate (1992) who pointed out that ordeals (e.g., in the form

of “workfare” programs) might be a part of a second-best design of transfer programs when

individual characteristics are not perfectly observable to the government (and income taxes

are not available as a policy tool). These papers relied on two-type models (e.g., with ”poor”

versus ”rich” agents) that admit explicit solutions but cannot produce detailed policy impli-

cations or empirically testable conditions.6

My contribution to this literature is to provide a condition for the optimality of using

ordeals to achieve redistributive goals in a model allowing for rich heterogeneity both in

terms of needs and costs of completing the ordeal. The condition takes a sufficient-statistics

form and is found via a perturbation argument, similar in spirit to the approach pioneered

by Piketty (1997) and Saez (2001) for the analysis of the optimal income tax. In the quasi-

linear model, I use mechanism-design techniques to show that the same condition is necessary

under regularity assumptions.

A growing literature on inequality-aware market design studies the equity-efficiency trade-

off in allocation problems with quasi-linear payoffs and redistributive preferences of the

designer driven by dispersion in marginal values for money. Dworczak r○ Kominers r○ Ak-

barpour (2021) (henceforth DKA) studied a two-sided market for a homogeneous good, and

showed that inefficient rationing is part of an optimal market design when the expected

value for money for traders with the lowest rate of substitution exceeds the average value

for money by a factor of two or more (the “high-inequality condition”). A number of papers

obtained an analogous condition (featuring the factor “two”) in related models: Kang (2024)

and Pai and Strack (2024)—when the allocation of the good generates externalities; Kang

and Zheng (2020)—when a good and a bad is allocated, Akbarpour r○ Dworczak r○ Komin-

ers (2024)—in a setting with heterogeneous qualities of the good, and Kang and Zheng

(2023)—when agents endogenously select into buyer and seller roles.

I complement this literature by analyzing the natural problem of allocating money when

the planner has redistributive preferences. Unlike previous papers, I do not assume that pref-

erences are quasi-linear. With quasi-linear preferences, my model becomes a reinterpretation

of the model of DKA (I explain that point in detail in Section 4.1). Even then, however,

the interpretation is economically insightful. When money is allocated in exchange for com-

pleting an ordeal, the unique (unconstrained) Pareto efficient mechanism that is feasible in

the presence of private information is a lump-sum transfer. As a result, there is a sharp

5See Sah (1987) for an extension of Weitzman’s framework to queuing mechanisms.
6See also Blackorby and Donaldson (1988), Besley and Coate (1991), and Gahvari and Mattos (2007) for

the analysis of the optimal combination of monetary and in-kind transfers.
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trade-off between efficiency and equity: Screening always leads to a deadweight loss, so it

can only be justified if the planner has redistributive preferences. (In contrast, screening is

essential for achieving Pareto efficiency when allocating goods in exchange for money.) The

clean separation of efficiency from screening allows me to provide a simple intuition for why

“two” appears in the high-inequality condition in quasi-linear models, and to clarify some

regularity assumptions needed for that conclusion.7

The observation that ordeals can be useful as screening devices has been exploited in

many other contexts, including classical analyses of costly signaling (Spence, 1973), contests

(Tullock, 1980), and private-value all-pay auctions (Hillman and Riley, 1989). The litera-

ture on the design of contests and all-pay auctions has focused on allocative efficiency and

maximizing effort as the two leading objectives.8 To the best of my knowledge, the condi-

tion I obtain for the redistributive objective is novel within this literature. I comment on

connections to existing results in Section 4.1.

2 Baseline framework

A designer has a budget B > 0 of money that she divides among a unit mass of agents. The

designer can ask agents to “burn” utility in exchange for receiving a monetary transfer.9

Specifically, there is some activity—called an ordeal—that is costly for the agents, has no

intrinsic social value, and is observable to the designer. The designer can choose a difficulty

y of the ordeal (e.g., waiting time, the length of required forms) that I normalize to lie in

[0, 1]. (The main result is unaffected if y ∈ {0, y0}, that is, when the designer cannot adjust

the difficulty of the ordeal.)

Agents are heterogeneous across two dimensions: socioeconomic circumstances and costs

of completing the ordeal. Specifically, an agent with type (ω, κ) who receives a monetary

transfer t in exchange for completing an ordeal with difficulty y has utility

u(t; ω)− κv(y),

where u is strictly increasing and concave in t for each ω, and v is continuous and strictly

increasing in y. I also assume that u is measurable in ω, twice continuously differentiable in

t, and that E[−u′′(B; ω)] < ∞ with expectation taken over the population distribution of ω.

7Interestingly, the threshold of “two” also appears in a condition on welfare weights in Lollivier and
Rochet (1983) who analyzed optimal taxation á la Mirrlees (1971) in a model with quasi-linear preferences
that permits a characterization of solutions in the presence of ironing. Lollivier and Rochet attached no
significance to the threshold, presumably because it showed up in a parametric example. However, as this
paper shows, there is in fact a deeper reason for why the threshold of “two” appears in their analysis.

8See, for example, Moldovanu and Sela (2001) and the references therein.
9The literature uses the phrase “money-burning” to refer to engaging in socially wasteful signaling; I use

“utility burning” because agents in my setting could be burning everything but money.
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The designer knows the joint distribution of (ω, κ) in the population (assumed to be

absolutely continuous with respect to Lebesgue measure) and attempts to maximize the

sum of agents’ utilities,

E[u(t(ω, κ); ω)− κv(y(ω, κ))],

over functions t(ω, κ) and y(ω, κ) subject to the budget constraint (the expected value of

transfer t is B) and the incentive-compatibility constraint, stating that an agent with type

(ω, κ) chooses (t(ω, κ), y(ω, κ)) from the set of feasible choices offered by the designer.

2.1 Interpretation

For an agent with type (ω, κ) who received a transfer t, let

λ(t) ≡ u′(t; ω) (1)

be the “marginal value for money” for that agent. The marginal value for money can be

interpreted as a marginal social welfare weight (as in Saez and Stantcheva, 2016).10 A natural

case is that ω represents initial wealth and u(t; ω) = ũ(ω + t), for some strictly increasing

and strictly concave utility function ũ; then, the weight is lower for agents with higher initial

wealth. However, ω could be multi-dimensional and capture other factors (such as job market

opportunities, family situation, social networks) that could influence how the designer values

giving an additional dollar to a given agent.

In the first-best allocation, a marginal dollar from the designer’s budget should be allo-

cated to the agent with the highest marginal value for money. The ordeal would never be

used. In fact, since the ordeal constitutes a pure social waste, any Pareto efficient allocation

must have y ≡ 0.

When agents’ characteristics are not observed, the only feasible Pareto efficient allocation

is the one where each agent receives the same amount of money B. I will refer to this

allocation as the lump-sum payment mechanism. The lump-sum payment mechanism would

be trivially optimal if the designer did not have redistributive preferences, that is, if all agents

had the same socioeconomic circumstances ω. With redistributive preferences, however,

there is a trade-off between efficiency and equity: Conditioning a higher monetary transfer

on completing an ordeal can potentially allocate more money to agents with higher λ.

When deciding whether to complete an ordeal, agents compare the additional monetary

benefit against the cost of completing the ordeal. Let

k(t) ≡ κ

u′(t; ω)
(2)

10The concerns about the use of marginal social welfare weights raised by Sher (2024) do not apply to my
analysis because I use a Utilitarian social welfare function.
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be the marginal disutility cost of performing the ordeal denominated in dollars, when the

agent received a transfer t. Note that—holding fixed the parameter κ—the cost of an ordeal

is effectively lower for agents who value money more.

I did not explicitly model observable information about agents that the designer may

have access to. However, this assumption is without loss of generality: The target population

should be interpreted as a subpopulation consisting of all agents with the same observable

characteristics. Under that interpretation, the distribution of (ω, κ) captures the residual

unobserved heterogeneity in agents’ characteristics. For example, the designer may be able

to verify whether an agent’s income is below or above a threshold (e.g., by performing a

means test); conditional on having low income, however, agents may still differ in their

marginal values for money.

3 When should ordeals be used?

Before stating the main result, I make an assumption about the distribution of k(B)—

the marginal money-denominated cost of the ordeal evaluated at the lump-sum payment

mechanism.11

Assumption 1. The parameter k(B), as defined in equation (2), has a distribution F with

a continuously differentiable density f on [k, k̄], f(k) > 0, f ′(k) < ∞, with k = 0. The

conditional expectation function E[λ(B)|k(B) = k] is continuous in k for k small enough.

The economically restrictive assumption is that the lower bound of the support of the

distribution of costs k is 0. This assumption holds if either the lower bound of the support

of κ is zero, or if the marginal value for money is unbounded. The role of the remaining as-

sumptions is to ensure that the left tail of the distribution of costs is well behaved, permitting

a local analysis. I discuss the consequences of relaxing these assumptions in Section 5.

Theorem 1. If the expected value for money conditional on the lowest money-denominated

cost exceeds the average value for money by more than a factor of two, i.e., if

E[λ(B)|k(B) = 0]

E[λ(B)]
> 2, (⋆)

then the designer can strictly improve upon the lump-sum payment mechanism by using an

ordeal.

Theorem 1 provides a simple sufficient condition for the optimality of using an ordeal

mechanism that depends only on the conditional distribution of marginal values for money

11I make the assumption directly on k(B) rather than on the more primitive distributions of (ω, κ) for the
sake of generality. An analogous assumption on the distribution of κ would be sufficient under appropriate
boundedness conditions on the derivatives of the utility function u.
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over the left tail of the distribution of costs. The self-targeting achieved by letting agents

complete the ordeal for a larger transfer has to be sufficiently aligned with social preferences

for redistribution, which must be relatively strong to begin with.

Implicitly, condition (⋆) depends on observable information available to the designer. For

example, if the designer can directly observe agents’ socioeconomic characteristics relevant

for assessing their value for money λ, the residual correlation of λ and k is zero, and hence

E[λ(B)|k(B) = k′] = E[λ(B)], for any k′. Thus, ordeals can be optimal only if information

available to the designer is relatively imprecise.

The main idea behind the proof of Theorem 1 is to study a local perturbation around

the lump-sum payment mechanism. When the perturbation is “small,” agents’ payoffs can

be treated as approximately quasi-linear in money. In the main text, I show the proof for

the case when payoffs are quasi-linear to begin with; this underlies the key intuition for

condition (⋆). The full proof of Theorem 1—which follows a similar logic—can be found in

Appendix A.

The extension of the argument from the quasi-linear to the general case is not entirely

trivial. It is easy to show that the quasi-linear extrapolation of utility functions around the

lump-sum payment mechanism provides a first-order approximation of individual utilities

achieved in the perturbation. However, that is not enough: Because the lump-sum payment

mechanism is efficient, a small perturbation around it has only second-order effects on wel-

fare. In the proof, I work directly with the non-approximated version of the model and show

that additional effects that arise in the non-quasi-linear model (such as income effects) can

nevertheless be ignored when evaluating a small enough perturbation.

3.1 Proof of Theorem 1 in the quasi-linear case

In general, the marginal value for money λ(t) and the marginal disutility cost of the ordeal

k(t) are endogenous to the mechanism via the transfer t, leading to a multi-dimensional

non-linear screening problem. These complications are avoided when agents’ utilities are

quasi-linear in money, i.e., when

u(t; ω) = uω t,

for some constant uω. In that case, the marginal value for money and the marginal cost of

the ordeal are exogenous parameters, which I indicate by dropping their dependence on the

transfer t in the notation. Agents’ utilities can be represented as

t− kv(y),
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with the conventional normalization of the value for money to 1. The designer then maxi-

mizes a weighted sum of agents utilities, with (constant) welfare weights λ:

E [λ · (t(k)− kv(y(k)))]

where the expectations operator is taken over the joint distribution of (λ, k), and the choices

of agents over (t, y) only depend on k.12 I assume quasi-linear preferences in this subsection

and prove Theorem 1 in that special case.

Consider a simple screening mechanism: The designer offers an additional payment t0

(on top of the lump-sum transfer) to agents who are willing to engage in some ordeal y0 > 0.

Agents with relative cost k ≤ t0/v(y0) choose this option; the remaining agents decline (and

only receive the lump-sum transfer).

Let E [λ| k] be the short-hand notation for the conditional expectation of λ conditional

on k. Intuitively, the function E [λ| k] determines the targeting effectiveness of the mecha-

nism. By a simple calculation, welfare associated with the mechanism is given by

ˆ t0/v(y0)

0

E [λ| k] (t0 − kv(y0))f(k)dk + E[λ](B − t0F (t0/v(y0))).

The first term of the welfare function captures the fact that an agent with type k ≤ t0/v(y0)

receives a payment t0 but incurs a cost kv(y0), thus enjoying net utility equivalent to receiving

a monetary payment t0 − kv(y0). The designer values that utility at E [λ| k] (t0 − kv(y0)),

since she values a dollar given to an agent with type k at E [λ| k]. The second term of the

welfare function captures the fact that a total amount t0F (t0/v(y0)) of money has been paid

out in additional compensation, leaving less funds in the budget for lump-sum transfers.

I further choose t0 so that only a small fraction of agents choose to engage in the ordeal.

Specifically, let t0 = ϵv(y0) for some small ϵ > 0, so that only types k ≤ ϵ accept. Then,

the ordeal mechanism, which I will denote by M(ϵ), outperforms the lump-sum transfer

mechanism if and only if

ˆ ϵ

0

E[λ|k](ϵ− k)f(k)dk > E[λ]ϵF (ϵ). (3)

The condition says that the welfare gain of additional utility enjoyed by types in [0, ϵ] must

exceed the opportunity cost of the required expenditure ϵF (ϵ). The opportunity cost is equal

to the average value for money. Observe that the condition will hold for small enough ϵ if

the ratio of the left hand side to the right hand side converges to a number strictly larger

12It is well known that in two-dimensional quasi-linear models the designer cannot do better by trying
to condition the allocation on the parameter λ that does not enter agents’ utility functions—see Jehiel and
Moldovanu (2001), Che, Dessein, and Kartik (2013), or DKA.
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than 1 in the limit as ϵ goes to zero. We have

lim
ϵ→0

´ ϵ
0
E[λ|k](ϵ− k)f(k)dk

E[λ]ϵF (ϵ)
= lim

ϵ→0

´ ϵ
0
E[λ|k]f(k)dk

E[λ](ϵf(ϵ) + F (ϵ))
=

E[λ|k]
2E[λ]

, (4)

where I used L’Hôpital’s rule twice, and relied on Assumption 1 on the distribution. We

thus obtain the following result, which establishes the proof of Theorem 1 in the quasi-linear

case.

Proposition 1. In the quasi-linear case, if the expected value for money conditional on the

lowest money-denominated cost exceeds the average value for money by more than a factor

of two, i.e., if
E[λ|k]
E[λ]

> 2, (QL⋆)

then the ordeal mechanism M(ϵ) strictly outperforms the lump-sum transfer for some ϵ > 0.

3.2 Intuition

In this subsection, I discuss the intuition for condition (⋆). For simplicity, I will refer to the

quasi-linear case and condition (QL⋆), noting that all intuitions continue to hold locally in

the non-quasi-linear model (as shown formally in the proof of Theorem 1).

Requiring agents to “burn” utility in exchange for a larger monetary transfer achieves

redistribution of money to agents with the lowest relative cost of engaging in the ordeal.

Achieving this redistribution is costly: As equation (4) reveals, for each dollar of public

funds spent, only 1/2 of the dollar is received by agents in form of a net utility increase; the

other 1/2 gets “burned” in the process of screening. Thus, the social value of targeting the

monetary transfer must exceed the value of public funds by more than a factor of two for

the ordeal mechanism to be socially valuable on the net.13

The interpretation of condition (QL⋆) is easiest when E[λ|k] is decreasing in k. Then,

the designer derives the highest expected value from giving money to the agent with the

lowest cost k. The value E[λ|k] depends both on the strength of the designer’s redistributive

preferences (the dispersion in λ’s), as well as on the targeting effectiveness of the ordeal.

Condition (QL⋆) states that the targeting effectiveness of the ordeal must be sufficiently

high so that the designer is willing to trade off efficiency for equity.

The intuition for why “2” appears in condition (QL⋆) is particularly clean in my model.14

I argue that the appearance of “2” in the condition involving welfare weights is a direct

13In the famous leaky-bucket metaphor of Okun (1975), ordeals in the quasi-linear model are associated
with a bucket that leaks 50% of the water being transferred. This first part of the intuition is mathematically
related to a result from Hoppe, Moldovanu, and Sela (2009) who showed that in the continuous version of
their matching model, half of the output from assortative matching is wasted through costly signaling.

14The intuition offered in DKA is related but more complicated, primarily for reasons that I explain in
detail in Section 4.1.
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Figure 3.1: The surplus triangle and the equity-efficiency trade-off

consequence of the quasi-linearity of preferences, which implies that the costs of screening the

lowest cost types are approximately half of the opportunity costs of the resources allocated

to them. To see that, instead of applying L’Hôpital’s rule as in (4), apply the mean value

theorem for integrals to the left hand side of (3) to get that, for some δϵ ∈ [0, ϵ],

ˆ ϵ

0

E[λ|k](ϵ− k)f(k)dk = E[λ|δϵ]f(δϵ)
ˆ ϵ

0

(ϵ− k)dk = E[λ| k]f(k)
ˆ ϵ

0

(ϵ− k)dk + o(ϵ2),

where o(ϵ2) denotes a term that converges to zero faster than ϵ2 as ϵ → 0. Intuitively, when

ϵ is small, we can ignore the differences in welfare and probability weights applied to the

utilities of different agents with costs in [0, ϵ], and instead apply the same weight E[λ| k]f(k)
to all of them.15 Due to quasi-linearity of preferences, the surplus of agents who accept the

ordeal can be represented as an isosceles triangle (see Figure 3.1). If the weight is constant,

the total surplus is calculated as the area of this triangle. The area is exactly half of the area

of a square with side ϵ that approximates the associated opportunity cost of public funds

(see the light-gray square in Figure 3.1, with ϵF (ϵ) ≈ f(k)ϵ2 that holds approximately for

small ϵ). Thus, to compensate for the surplus lost due to costly screening, the designer must

value the area of the triangle more than twice as much as the area of the square, in social

utility units. This leads to condition (QL⋆).

15This argument must be appropriately modified when f(k) = 0 because the density is no longer locally
constant in that case; see the discussion in Section 5.
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3.3 Parametric example

Next, I present a parametric example to illustrate condition (⋆). The parametrization is

stylized but shows one possible way towards an empirical test of the condition.16

Since marginal values for money are not directly observable, I will assume that they are

derived from a common utility function u for wealth with ω representing agents’ respective

wealth levels. The underlying assumption is that the designer knows the wealth distribution

in the target population but does not perfectly observe any individual’s wealth level.

Suppose that

u(t; ω) =
(ω + t)1−θ

1− θ
,

takes the constant relative risk aversion form, with coefficient of relative risk aversion θ > 0.

Agents differ in their wealth levels ω, and thus in their marginal values u′(B; ω). Note that

condition (⋆) depends on the shape of the right tail of the distribution of values for money,

and hence on the left tail of the distribution of wealth. I thus choose a family of distributions

of total wealth (gross of the lump-sum payment), indexed by how thick the left tail is:

P(ω +B ≤ x) = xβ,

for β > 0 and x ∈ [0, 1]. Under this parametrization, the bottom 1/2 of agents with wealth

below x hold (1/2)(1+β)/β of the total wealth held by agents with wealth below x, for any x.

Thus, lower β corresponds to a thicker left tail. Because

P(u′(B; ω) ≥ x) =

(
1

x

)β
θ

,

for x ≥ 1, marginal values for money have a Pareto distribution with tail parameter α ≡ β/θ.

Finally, suppose that the costs κ come from a family of linear-density distributions on

[0, 1] indexed by γ ∈ (0, 2):

P(κ ≤ x) = γx+ (1− γ)x2,

with γ = 1 corresponding to the uniform distribution. Finally, assume that κ and ω are

independent.

The resulting family of distributions, parameterized by (α, β, γ), satisfies the regularity

conditions imposed in Section 2 and Assumption 1 if α ≥ β/(β−2) and β > 2. In particular,

the average value for money is finite and equal to α/(α− 1).

16See Allen and Rehbeck (2023) for a discussion of the empirical testability of the high-inequality condition
from DKA.
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By direct calculation,17

E [λ(B)|k(B) = k] =

2(1−γ)
3−α

(1− k)−
(

γ
2−α

+ 2(1−γ)
3−α

)
(1− kα−2)

2(1−γ)
2−α

(1− k)−
(

γ
1−α

+ 2(1−γ)
2−α

)
(1− kα−1)

.

In particular,

E[λ(B)|k(B) = 0]

E[λ(B)]
=


(α−1)2

α(α−2)
α > 2,

∞ α ≤ 2.

Therefore, condition (⋆) holds if and only if

β

θ
< 1 +

√
2. (5)

Intuitively, the designer has stronger redistributive preferences when there are more poor

agents (β is lower) or when agents are more risk averse (θ is higher), so that they have higher

marginal value for money at low wealth levels. When the tail of the Pareto distribution of

values for money is sufficiently thick, it is optimal to sacrifice efficiency to achieve better

redistribution.

While the empirical estimates of θ vary depending on the method and context, most

studies obtain that θ is weakly greater than 1.18 A simple empirical property of the left tail

of the distribution of wealth is then sufficient for condition (5), and hence for condition (⋆):

The bottom 50% of agents with wealth below some low threshold ω should hold no more than

(1/2)
2+

√
2

1+
√
2 ≈ 37.5% of wealth in that group. If the designer has access to observable infor-

mation about the agents (e.g., being above or below an income threshold, or family status),

then this property should be tested at the conditional distribution of wealth (conditional on

a given set of observables).

Note that condition (5) does not depend on the parameter of the cost distribution γ. Even

though γ matters for the conditional expectation of the welfare weight, the exact shape of

the density of costs is irrelevant as long as the density remains strictly positive in the left

tail. In fact, it is easy to show that condition (5) remains unchanged for any distribution of

κ with a density that is strictly positive at zero. This implies that an empirical researcher

interested in testing whether ordeals can improve welfare in a particular setting need not

estimate the entire distribution of costs.

17For α ∈ {2, 3} the expression is still well-defined by taking an appropriate limit.
18See, for example, Chetty (2006) and the references therein.
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4 Optimal mechanism in the quasi-linear case

In this section, I assume that agents’ preferences are quasi-linear and connect the result about

the simple ordeal mechanism (offering a uniform payment for completing a fixed ordeal) to

the question of optimal design (allowing for general mechanisms offering multiple levels of

the monetary payment for completing ordeals of varying difficulty).

In the quasi-linear case, it is without loss of generality to normalize v to be the identity

function. It is also well-known (see footnote 12) that the optimal mechanism only screens

agents based on their relative costs k, and hence the optimization problem for the designer

can be written as finding the best direct mechanism of the form:

max
y(k)∈[0, 1], t(k)≥0

ˆ k̄

k

E[λ| k](−ky(k) + t(k))dF (k), (OBJ)

−ky(k) + t(k) ≥ −ky(k′) + t(k′), ∀k, k′, (IC)

−ky(k) + t(k) ≥ 0, ∀k, (IR)ˆ k̄

k

t(k)dF (k) = B. (B)

By adapting standard arguments (see Appendix B), I can derive the following result.

Proposition 2a. The optimal mechanism uses an ordeal (y is strictly positive for a positive-

measure set of agents) if and only if

E[V (k)| k ≤ k′] > 0 for some k′ > 0, (6)

where

V (k) =
(
E
[
λ|κ
λ
≤ k

]
− E[λ]

) F (k)

f(k)
− E[λ] · k. (7)

Condition (⋆) implies that V (k) > 0 for small enough k; hence, condition (⋆) implies con-

dition (6). Conversely, if V (k) crosses 0 at most once from above at an interior k,19 then

condition (6) implies that condition (⋆) must hold as a weak inequality.

The function V (k) expresses the trade-off between efficiency and redistribution. The first

term in brackets measures the welfare effect of a monetary transfer from an average agent to

an agent with cost below k, which is typically positive for a designer with redistributive pref-

erences. The inverse hazard rate F (k)/f(k) quantifies information rents in one-dimensional

screening problems in which lower types receive higher utility. Its appearance means that

the bracketed expression captures the utility transfer net of the cost of the ordeal. The

second term captures the inefficiency of the ordeal. The cost k is multiplied by the average

19Formally, {k ∈ [k, k̄] : V (k) ≥ 0} is a (potentially degenerate) interval.

14



value for money; the agent completing the ordeal is compensated for her costs by the extra

monetary payment but the shadow cost of that payment is incurred by all agents through its

impact on the budget constraint. Condition (6) states that we can find a threshold type k′

such that the positive redistributive effect exceeds the negative inefficiency effect on average

for types below k′. The averaging is a consequence of incentive-compatibility, since if type

k′ finds it optimal to engage in the ordeal, so do all types below k′.

Proposition 2a states that condition (⋆) is not only sufficient for the optimality of some

redistribution but also (almost) necessary when the function V (k) crosses 0 at most once

from above at an interior k. This regularity condition requires that the positive redistributive

effect (E
[
λ|κ

λ
≤ k

]
> E[λ]) dominates the negative inefficiency effect exactly when k is below

some threshold (possibly degenerate). When F is the uniform distribution, V (k) satisfies

the regularity condition as long as E
[
λ|κ

λ
≤ k

]
is non-increasing, which is a natural case.

Assuming that E
[
λ|κ

λ
≤ k

]
is non-increasing, the regularity condition rules out the possibility

that the positive redistributive effect is weak for low k and strong for high k due to the shape

of the density f(k).

To understand the connection between Proposition 2a and condition (⋆), observe that (⋆)

is equivalent to V ′(k) > 0. When k = 0, V (0) = 0, and condition (⋆) states precisely that

the positive redistributive effect dominates the negative inefficiency effect for small enough

costs k, which means that condition (6) must hold. Conversely, if V (k) is positive for k small

enough, then (⋆) must hold at least as a weak inequality.

The quasi-linear model enables a characterization of the optimal mechanism.

Proposition 2b. The optimal mechanism either (i) gives agents a lump-sum transfer, (ii)

gives agents a lump-sum transfer and offers an additional payment p for completing the ordeal

y = 1, or (iii) offers a payment p for completing the ordeal y = 1 and may offer a payment

p′ ≤ p for completing an easier ordeal y′ < 1.

If B is sufficiently large,20 the optimal mechanism takes the form (i) or (ii).

By Proposition 2b, when the budget B is sufficiently large, the simple mechanism M(ϵ)

considered in Section 3 is in fact optimal in the quasi-linear case for an optimally chosen

ϵ ≥ 0. Intuitively, the optimal ϵ is a threshold type k⋆ such that the positive redistributive

effect dominates the negative inefficiency effect precisely for types k ≤ k⋆. When the budget

B is small, so that only agents who complete an ordeal receive a strictly positive amount of

money, full optimality may require giving agents a choice between a more difficult ordeal for

a larger payment and a simpler ordeal for a smaller payment.21

20A sufficient condition is that B ≥ k⋆F (k⋆), where k⋆ is the cutoff cost type completing the ordeal in an
optimal solution to an auxiliary problem—see the proof for details.

21The proof reveals that the inclusion of the second option is in general needed to guarantee that the
budget constraint can be satisfied with equality when a lump-sum transfer is not given; mathematically, this
is a manifestation of a more general property of linear programming with constraints explained elegantly by
Doval and Skreta (2024).
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4.1 What is special about allocating money?

In this subsection, I comment on how the quasi-linear version of my model relates to exist-

ing models analyzed in the costly-screening and inequality-aware market design literatures.

Agents’ preferences in any linear-utility model can be expressed via a utility function

rx− p,

where x is an allocation (e.g., allocation probability), p is a payment (which could be mon-

etary or non-monetary), and r is the agent’s private type (the rate of substitution between

the allocation and payment).

From the point of view of agents’ preferences, it clearly does not matter whether the

private-type parameter r is placed on x or on p. In particular, the agent’s utility in the

quasi-linear version of my model can be written this way as well, with x ≡ t, v(y) ≡ p, and

r ≡ 1/k. There is also nothing special about allocating money in exchange for completing an

ordeal; such case is mathematically indistinguishable from allocating a physical good against

a monetary or non-monetary payment, which is a problem studied by many other papers.22

What gives economic meaning to the parametrization and interpretation of agents’ util-

ities is the designer’s objective. Consequently, it is the objective that sets apart my model

from existing work.

The most classical case is when x measures the allocation of a resource, r is the agent’s

value, and the designer attempts to maximize allocative efficiency treating the payment p

as fully transferable (in particular, the designer does not have redistributive preferences).

Then, the optimal allocation is given by assortative matching: Agents with higher values

r receive a higher allocation x, and the first best can be implemented with an appropriate

transfer schedule.

The costly-screening literature analyzed (among other less related objectives) the case in

which the designer is interested in maximizing allocative efficiency but the variable p corre-

sponds to “money-burning”—any payment constitutes a social loss. In this case, as shown in

various contexts by McAfee and McMillan (1992), Hartline and Roughgarden (2008), Hoppe,

Moldovanu, and Sela (2009), Condorelli (2012), and Chakravarty and Kaplan (2013), assor-

tative matching remains optimal if and only if the inverse hazard rate of r is non-decreasing

(if it decreasing, the second-best solution is to allocate the good randomly).

The inequality-aware market-design literature assumes that the designer has redistribu-

tive preferences; p is interpreted as money that can be transferred across agents but the

designer has preferences over allocations of money. Formally, she maximizes the sum of

22Yang (2023) goes beyond this simple case by allowing for two instruments: one interpreted as money
and the other as a costly screening device—the resulting problem is multidimensional; he derives conditions
under which the designer cannot improve her revenue by using the costly screening device.
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λ(xr − p) across all agents, where λ is a social welfare weight. When welfare weights are

sufficiently negatively correlated with r, assortative matching is suboptimal and inefficient

rationing may be part of the second-best solution (Condorelli (2013), DKA). Optimality of

rationing in such models depends on the properties of the joint distribution of r and λ. The

equity-efficiency trade-off is relatively complicated: Efficiency requires screening but equity

considerations push towards allocating to lower types; additionally, rationing affects revenue,

changing the amount of money available for redistribution via lump-sum transfers.

The designer in my framework has redistributive preferences (with welfare weights given

by marginal values for money) but can only rely on a wasteful screening device. Without

redistributive preferences, the unique optimal (and Pareto efficient) mechanism is a lump-

sum transfer. This makes the equity-efficiency trade-off particularly simple: Screening the

agent’s private information is needed only when the designer has redistributive preferences.

For further intuition, note that this case is mathematically equivalent to a modified version

of the DKA model in which agents are sellers, the designer buys goods from the sellers,

and then disposes of all the goods (sellers’ values for the good are analogous to the costs

of completing the ordeal, and the ordeal difficulty is analogous to the probability of a sales

transaction). When goods acquired by the designer are allocated to the buyers (as in the

actual model of DKA), they have a positive value in the designer’s objective, and screening

is necessary to achieve Pareto efficiency; but when goods are discarded, the unique Pareto

efficient outcome is not to acquire any goods; screening the sellers’ costs is only used to affect

redistribution among the sellers.

5 Discussion

The assumption k = 0. Throughout, I have assumed that there are some agents for whom

the marginal cost of the ordeal is arbitrarily small. Suppose instead that the distribution

of k is bounded by k > 0. Then, neither Theorem 1 nor Proposition 1 hold. When k = 0,

equation (4) reveals that the costs and benefits of an ϵ distortion away from a lump-sum

transfer are both of order ϵ2. However, the opportunity cost is of order ϵ when k > 0, and

thus it is never optimal to deviate from a lump-sum transfer by offering a small additional

payment for a “small” ordeal. The first part of Proposition 2a still holds: A “large” ordeal

is optimal if E[V (k)| k ≤ k′] > 0 for some k′, where the phrase “large” is justified since the

expectation will be negative for k′ close to 0. Indeed, V (k) starts out strictly negative when

k > 0. A positive derivative of V (k) at k (which is equivalent to condition (⋆)) is thus no

longer sufficient; however, it is still necessary under appropriate regularity conditions on V .

For the problem studied by this paper, the condition k = 0 can be tested empirically.

Beyond the context of the current model, the economic meaning of the condition k = 0 is

that there exist perturbations of the efficient mechanism that result in a small (arbitrarily
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close to zero) per-agent loss in efficiency. This property holds naturally in many other equity-

efficiency problems. For example, in goods allocation problems, a small amount of rationing

induces a small per-agent loss in efficiency regardless of the support of agents’ values for

the good. This is because rationing results in allocating goods to agents who do not have

the highest willingness to pay; the efficiency loss can be kept arbitrarily small if rationing

applies to a small interval of agent values, regardless of their absolute magnitude. This

explains why papers focusing on redistribution in goods allocation problems, such as DKA,

obtained a high-inequality condition analogous to (⋆) without imposing any restrictions on

the support of the distribution of values. In the problem of allocating a good and a bad,

Kang and Zheng (2020) assume that there are agents with arbitrarily small disutility from

consuming the bad, implying that the first units of the bad can be allocated at an arbitrarily

small social loss.

The assumption f(k) > 0. Next, I discuss how the results should be modified when

Assumption 1 is relaxed so that f(k) = 0. Intuitively, when the density of the distribution

of costs is zero at the lower bound, the local shape of that density matters for the equity-

efficiency trade-off. Define the left tail parameter of the distribution F as

α := lim
k→0

kf ′(k)

f(k)
,

assuming the limit exists (and is finite). Note that Assumption 1 implies that α = 0, which

can be interpreted as saying that the density is locally constant at zero.

Repeating the key calculation (4) while allowing for any α ≥ 0, we obtain

lim
ϵ→0

´ ϵ
0
E[λ|k](ϵ− k)f(k)dk

E[λ]ϵF (ϵ)
= lim

ϵ→0

´ ϵ

0
E[λ|k]f(k)dk

E[λ](ϵf(ϵ) + F (ϵ))
=

E[λ|k]
E[λ] (2 + α)

. (8)

Therefore, an ordeal mechanism is optimal in the quasi-linear case if

E[λ|k]
E[λ]

> 2 + α.

Theorem 1 remains true under an analogous modification of condition (⋆): Using an ordeal

mechanism is optimal if the conditional expected value for money for agents with the lowest

cost of completing the ordeal exceeds the average value for money by a factor 2 + α.

For intuition, consider again Figure 3.1. When f(k) = 0, we can no longer treat the

density as locally constant. Instead, what matters is the behavior of the left tail of the

distribution, which we can approximate (for k small enough) by kα.23 Effectively, the costs

23For densities that converge to 0 at an exponential rate exp(−1/k) or faster, we have α = ∞. A small
ordeal cannot be optimal in this case—analogously to the case k > 0.
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and benefits incurred by agents with smaller k receive a smaller weight because such costs k

are less frequent in the population. The ratio of the “weighted” area of the triangle to the

“weighted” area of the square is

´ ϵ
0
(ϵ− k) · kαdk´ ϵ
0
ϵ · kαdk

=
1

2 + α
.

The ratio is decreasing in α because the cost (represented by the square) is constant in k,

while the benefit (represented by the triangle) is decreasing in k: The larger α is, the more

probability weight is placed on relatively large k, which does not effect the total cost but

decreases the total benefit. Thus, the welfare weight on agents completing the ordeal must

now be higher to justify its use.

Means testing. In my model, all agents who decide to complete the ordeal receive the

associated monetary transfer. In practice, incurring the cost to apply may be followed by

a means-testing stage in which the public agency verifies eligibility of the applicant. Alatas

et al. (2016) demonstrate that the ordeal of traveling to a registration site appears to be

useful in their context primarily because it screens out ineligible agents who have a small

(but non-negligible) probability of passing the means test.

This effect can be added to the current framework. Consider the quasi-linear model.

Suppose that each agent has a third dimension of her type, δ, interpreted as the probability

of passing the means test.24 Condition (QL⋆) for the optimality of the ordeal becomes

E[δλ| k] > 2 · E[δ|k] · E[λ],

where k ≡ κ/(δλ), under the assumption that the means test can be administered only condi-

tional on completing the ordeal. In particular, ordeals become optimal when the correlation

between δ and λ is sufficiently strong in the left tail of the distribution of costs relative to

the average correlation. Strong positive correlation in the left tail of costs is plausible when

(i) applicants with low cost k are unlikely to have a low δ, and (ii) the eligibility criteria

lead to a high likelihood δ of receiving aid for agents with high values for money λ.

If instead the means test is performed whether or not the agent completes the ordeal

(but the agent does not know its outcome when applying), the condition becomes

E[δλ| k]
E[δ|k]

> 2 · E[δλ]
E[δ]

.

Effectively, the “net” marginal values for money δλ are rescaled by the relevant probabilities

of receiving the monetary transfer given the necessity to pass the means test. The availability

24Strictly speaking, δ is the agent’s (statistically correct) belief about passing the means test. At the cost
of introducing one more parameter, one could also allow for agents’ beliefs to be misspecified.
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of the means test relaxes condition (QL⋆) if the positive correlation between δ and λ is

stronger in the left tail of the cost distribution than on average.

Binary eligibility criteria. In their analysis of disability insurance, Deshpande and Li

(2019) rely on a binary welfare-weight structure: The designer benefits from allocating a

dollar to an agent if and only if that agent is eligible for receiving aid (according to some

true, but partially hidden, characteristics). Suppose that in a given group of applicants with

the same observables, only a fraction β are eligible. Then, a simple rewriting of condition (⋆)

yields that costly screening should be used for that group if the fraction of eligible agents in

the left tail of the distribution of costs k is at least 2β. That is, eligible agents must be over-

represented by a factor of two in the subgroup of agents with the lowest money-denominated

cost of completing the ordeal for the ordeal to be socially optimal.

“Useful” ordeals. For the purpose of the model, an ordeal was defined as an activity

that is a purely wasteful. However, many costly-screening procedures generate concrete

benefits. Verifying eligibility for social programs can be burdensome for potential recipients,

but it also provides relevant information to the public agency (as in the model of Kleven

and Kopczuk, 2011). The requirement to document work search efforts while receiving

unemployment benefits helps screen out those who do need support, but it also alleviates

the moral-hazard problem. Finally, employment guarantee programs rely on a targeting

principle analogous to how ordeals work, but the labor provided by program beneficiaries is

used for productive tasks. For example, in one of the largest employment guarantee programs

in the world created by India’s National Rural Employment Guarantee Act, workers engage

in agricultural projects that are designed to benefit local communities (Dréze, 2019).

Since ordeals can be “bundled” with socially useful activities in many different ways,

it is difficult to imagine a parsimonious model that would cover a large variety of such

possibilities. One benefit of modeling “pure” ordeals is that conditions justifying their use,

such as condition (⋆), remain sufficient when the ordeal is associated with some additional

social benefit.

Policy implications. While the model is purposefully kept simple and hence abstracts

away from many forces that are relevant in practice, its analysis delivers some insights about

when ordeals should be used to target monetary aid. As demonstrated in Section 3.3, under

additional parametric assumptions, condition (⋆) for optimality of ordeals can be empirically

tested. A non-parametric test could be developed under some assumption about how the

marginal values of money are determined. The analysis also provides high-level intuition

for which ordeals might be useful. In order for the condition to hold, the ordeal must be

less costly for agents with high values for money (i.e., poorer agents). For example, when
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the ordeal is queuing, agents should not be allowed to pay others to stand in line on their

behalf. However, the question of optimal design of targeting mechanisms when the designer

can flexibly adjust not just the difficulty but the type of the ordeal remains relatively open.25
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A Proof of Theorem 1

Let µ denote the distribution of (ω, κ) (recall that µ is assumed to be continuous with respect

to Lebesgue measure). To simplify notation, I will write λ instead of λ(B) and k instead of

k(B).

Consider a mechanism in which agents are offered a lump-sum payment T and an option

to receive an additional payment ϵv(y0) for completing an ordeal with difficulty y0, for some

ϵ > 0. I will show that under condition (⋆) this mechanism strictly improves upon the

lump-sum payment mechanism for small enough ϵ > 0.

Let Aϵ denote the set of types (ω, κ) who choose to complete the ordeal. In order to

balance the budget, we must have that T = B − ϵv(y0)µ(Aϵ). Then, we have

(ω, κ) ∈ Aϵ ⇐⇒ κ ≤ κ(ϵ; ω) ≡ u(B + ϵv(y0)(1− µ(Aϵ)); ω)− u(B − ϵv(y0)µ(Aϵ); ω)

v(y0)
.
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Lemma 1. For any ω,

lim
ϵ→0

κ(ϵ; ω)

ϵ u′(B; ω)
= 1.

Proof. By continuity of u, we have limϵ→0 κ(ϵ; ω) → 0; by continuity of µ, we have limϵ→0 µ(Aϵ) →
0. Note also that

κ′(ϵ; ω) = u′(B + ϵv(y0)(1− µ(Aϵ)); ω)(1− µ(Aϵ)) + u′(B − ϵv(y0)µ(Aϵ); ω)µ(Aϵ),

and hence

lim
ϵ→0

κ′(ϵ; ω) = u′(B; ω),

for any ω. Therefore, we can apply L’Hôpital’s rule to get

lim
ϵ→0

κ(ϵ; ω)

ϵ u′(B; ω)
= lim

ϵ→0

κ′(ϵ; ω)

u′(B; ω)
= 1.

Let us write the difference between the welfare associated with the ordeal mechanism

and the welfare of the lump-sum payment mechanism as

∆W (ϵ) ≡
¨ κ(ϵ;ω)

κ

(u(B + ϵv(y0)(1− µ(Aϵ)); ω)− u(B − ϵv(y0)µ(Aϵ); ω)− κv(y0)) dµ(κ, ω)

+

ˆ
u(B − ϵv(y0)µ(Aϵ); ω)dµω(ω)−

ˆ
u(B; ω)dµω(ω),

where dµω denotes the marginal distribution over ω, and κ is the lower bound of the support

of κ. To show that ∆W (ϵ) > 0 for small enough ϵ, it suffices to show that the ratio

R(ϵ) ≡
˜ κ(ϵ;ω)

κ
(u(B + ϵv(y0)(1− µ(Aϵ)); ω)− u(B − ϵv(y0)µ(Aϵ); ω)− κv(y0)) dµ(κ, ω)´

u(B; ω)dµω(ω)−
´
(u(B − ϵv(y0)µ(Aϵ); ω)) dµω(ω)

is strictly above 1 in the limit as ϵ → 0. Since both the numerator and the denominator

approach 0 as ϵ → 0, we can apply L’Hôpital’s rule to obtain

lim
ϵ→0

R(ϵ) = lim
ϵ→0

˜ κ(ϵ;ω)

κ
u′(B + ϵv(y0)(1− µ(Aϵ)); ω)

(
1− µ(Aϵ)− ϵ[ d

dϵ
µ(Aϵ)]

)
dµ(κ, ω)´

u′(B − ϵv(y0)µ(Aϵ); ω)dµω(ω)
(
µ(Aϵ) + ϵ[ d

dϵ
µ(Aϵ)]

)
+

˜ κ(ϵ;ω)

κ
u′(B − ϵv(y0)µ(Aϵ); ω)

(
µ(Aϵ) + ϵ[ d

dϵ
µ(Aϵ)]

)
dµ(κ, ω)´

u′(B − ϵv(y0)µ(Aϵ); ω)dµω(ω)
(
µ(Aϵ) + ϵ[ d

dϵ
µ(Aϵ)]

)
 , (9)
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where I used the fact that

u(B + ϵv(y0)(1− µ(Aϵ)); ω)− u(B − ϵv(y0)µ(Aϵ); ω)− κ(ϵ; ω)v(y0) = 0

by definition of κ(ϵ; ω). Note that the numerator and the denominator of expression (9)

converge to 0 as ϵ → 0. I prove two lemmas that will be helpful in analyzing the limit.

Let µ̃ denote the distribution of (ω, k(B)), induced by µ through a change of measure

under the mapping defined by equation (2).

Lemma 2.

lim
ϵ→0

µ(Aϵ)

ϵ
= f(0),

where recall that f is the density of the distribution of k and k = 0, by Assumption 1.

Proof. We have

µ(Aϵ) = µ̃

(
k ≤ κ(ϵ; ω)

u′(B; ω)

)
,

where µ̃
(
k ≤ κ(ϵ;ω)

u′(B;ω)

)
is short-hand notation for µ̃

({
(k, ω) : k ≤ κ(ϵ;ω)

u′(B;ω)

})
. We can write

lim
ϵ→0

µ(Aϵ)

ϵ
= lim

ϵ→0

µ̃ (k ≤ ϵ)

ϵ
· lim
ϵ→0

µ̃
(
k ≤ κ(ϵ;ω)

u′(B;ω)

)
µ̃ (k ≤ ϵ)

,

provided that both limits exist and are finite. The first of these limits is given by

lim
ϵ→0

µ̃ (k ≤ ϵ)

ϵ
= lim

ϵ→0

F (ϵ)

ϵ
= f(0),

by L’Hôpital’s rule. The second of these limits is given by

lim
ϵ→0

µ̃
(
k ≤ κ(ϵ;ω)

u′(B;ω)

)
µ̃ (k ≤ ϵ)

= lim
ϵ→0

˜
1{k≤ κ(ϵ;ω)

u′(B;ω)
}dµ̃(k, ω)

F (ϵ)

= lim
ϵ→0

˜ (
1{k≤ κ(ϵ;ω)

u′(B;ω)
} − 1{k≤ϵ}

)
dµ̃(k, ω) +

˜ (
1{k≤ϵ}

)
dµ̃(k, ω)

F (ϵ)

= lim
ϵ→0

˜ κ(ϵ;ω)

u′(B;ω)
ϵ

dµ̃(k, ω)

F (ϵ)
+ 1 = 1,

where the last equality follows from Lemma 1, the fact that k has a continuous (and hence

bounded) density, and that f(0) > 0 (so that F (ϵ) converges to 0 at the rate of ϵ). This

concludes the proof of the lemma.

A simple corollary of Lemma 2 is as follows.
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Lemma 3.
d

dϵ
µ(Aϵ)|ϵ=0 = f(0).

Proof. We have

d

dϵ
µ(Aϵ)|ϵ=0 = lim

ϵ→0+

µ(Aϵ)− µ(A0)

ϵ
= lim

ϵ→0+

µ(Aϵ)

ϵ
= f(0),

by Lemma 2.

By Lemmas 2 and 3, and the fact that f(0) > 0, the denominator of the expression in

equation (9) converges to 0 at the rate ϵ. It follows that we can eliminate all terms in the

numerator of the expression in equation (9) that converge to 0 faster then ϵ; we obtain:

lim
ϵ→0

R(ϵ) = lim
ϵ→0

˜ κ(ϵ;ω)

κ
u′(B + ϵv(y0)(1− µ(Aϵ)); ω)dµ(κ, ω)´

u′(B − ϵv(y0)µ(Aϵ); ω)dµω(ω)
(
µ(Aϵ) + ϵ d

dϵ
µ(Aϵ)

) .
Next, observe that we can write

lim
ϵ→0

R(ϵ) = lim
ϵ→0

1´
u′(B − ϵv(y0)µ(Aϵ); ω)dµω(ω)

· lim
ϵ→0

˜ κ(ϵ;ω)

κ
u′(B + ϵv(y0)(1− µ(Aϵ)); ω)dµ(κ, ω)

µ(Aϵ) + ϵ d
dϵ
µ(Aϵ)

=
1´

u′(B; ω)dµω(ω)︸ ︷︷ ︸
E[λ]

· lim
ϵ→0

˜ κ(ϵ;ω)

κ
u′(B + ϵv(y0)(1− µ(Aϵ)); ω)dµ(κ, ω)

µ(Aϵ) + ϵ d
dϵ
µ(Aϵ)

.

The next step is to simplify the numerator of the above expression, which will be accom-

plished by the following lemma.

Lemma 4.

Q ≡ lim
ϵ→0

˜ κ(ϵ;ω)

κ
u′(B + ϵv(y0)(1− µ(Aϵ)); ω)dµ(κ, ω)˜ κ(ϵ;ω)

κ
u′(B; ω)dµ(κ, ω)

= 1.

Proof. By L’Hôpital’s rule, we have

Q = lim
ϵ→0

´
κ′(ϵ; ω)u′(B + ϵv(y0)(1− µ(Aϵ)); ω)dµ(κ(ϵ; ω), ω) +O(ϵ)´

κ′(ϵ; ω)u′(B; ω)dµ(κ(ϵ; ω), ω)
,

where O(ϵ) is an expression that converges to 0 as ϵ → 0 (using the boundedness assumption

on u′′). Note that by Lemma 1 (and by the fact that the density of k is positive at 0 and

κ′(ϵ; ω) > 0 for almost all ω) the remaining expressions have non-zero limits, and we obtain

Q =

´
[u′(B; ω)]2dµ̃(ω|k = 0)´
[u′(B; ω)]2dµ̃(ω|k = 0)

= 1.
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By Lemmas 2, 3, and 4, we can write

lim
ϵ→0

R(ϵ) =
1

E[λ]
· lim
ϵ→0

˜ κ(ϵ;ω)

κ
u′(B; ω)dµ(κ, ω)

µ(Aϵ) + ϵ d
dϵ
µ(Aϵ)

=
1

E[λ]
· lim
ϵ→0

˜ κ(ϵ;ω)

κ
u′(B; ω)dµ(κ, ω)

ϵ
· lim
ϵ→0

1
µ(Aϵ)

ϵ
+ d

dϵ
µ(Aϵ)

=
1

E[λ]
· 1

2f(0)
· lim
ϵ→0

˜ κ(ϵ;ω)

κ
u′(B; ω)dµ(κ, ω)

ϵ
.

As in the proof of Lemma 2, let us apply a change of variables

¨ κ(ϵ;ω)

κ

u′(B; ω)dµ(κ, ω) =

¨
1{

k≤ κ(ϵ;ω)

u′(B;ω)

}u′(B; ω)dµ̃(k, ω).

We then have

lim
ϵ→0

˜ κ(ϵ;ω)

κ
u′(B; ω)dµ(κ, ω)

ϵ
= lim

ϵ→0

˜ κ(ϵ;ω)

u′(B;ω)
ϵ

u′(B; ω)dµ̃(k, ω) +
˜

1{k≤ϵ}u
′(B; ω)dµ̃(k, ω)

ϵ

= lim
ϵ→0

˜
1{k≤ϵ}u

′(B; ω)dµ̃(k, ω)

ϵ
,

by the same argument as used in the proof of Lemma 2. But then we have (by changing the

order of integration)

lim
ϵ→0

˜
1{k≤ϵ}u

′(B; ω)dµ̃(k, ω)

ϵ
= lim

ϵ→0

´ ϵ
0
E[λ|k]f(k)dk

ϵ
= E[λ|k = 0]f(0),

where the last step follows from L’Hôpital’s rule again. Putting everything together we

obtain

lim
ϵ→0

R(ϵ) =
E[λ|k = 0]

2E[λ]
,

which concludes the proof of Theorem 1: By Assumption (⋆), limϵ→0R(ϵ) > 1.

B Proof of Proposition 2a and 2b

The proof relies on the standard ironing technique.26 Let u denote the utility of the highest

type k̄ in the mechanism—because type k̄ does not engage in any ordeal in the optimal

mechanism, u can be interpreted as the lump-sum transfer.27 The envelope formula yields

26See Myerson (1981), and in the context of optimal redistribution Condorelli (2013) or Akbarpour r○

Dworczak r○ Kominers (2024), among many others.
27Indeed, if y(k̄) > 0, then because y has to be non-increasing in an incentive-compatible mechanism, we

could decrease y uniformly and strictly increase the designer’s objective.
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that in an incentive-compatible individually-rational mechanism, u ≥ 0 and

−ky(k) + t(k) = u+

ˆ k̄

k

y(s)ds.

The above condition, combined with the requirement that y(k) is non-increasing, is neces-

sary and sufficient for (IC) and (IR). Using integration by parts, I can rewrite the budget

constraint (B) as ˆ k̄

k

(
k +

F (k)

f(k)

)
y(k)dF (k) + u = B. (10)

Let η be the Lagrange multiplier on the budget constraint (B).28 Using integration by parts

again, I can rewrite the optimal design problem as

max
y(k)∈[0, 1], u≥0

ˆ k̄

k

[(
E
[
λ|κ
λ
≤ k

]
− η

) F (k)

f(k)
− ηk

]
y(k)dF (k) + (E[λ]− η)u (OBJ’)

y(k) is non-increasing, (M)

and η must be such that a solution (y⋆, u⋆) to the above problem satisfies the budget con-

straint (10). Existence of solution requires that η ≥ E[λ]. I conjecture that η = E[λ], and
later discuss how to modify the analysis when the budget constraint (10) does not hold with

that conjecture. Under the conjecture, the objective (OBJ’) is equal to
´ k̄
k
V (k)y(k)dF (k),

where V is defined by equation (7).

I define the ironed value function next. Let

Ψ(t) = −
ˆ 1

t

V (F−1(x))dx,

and let coΨ denote the concave closure of Ψ. Then, I can define

V (k) = (coΨ)′(F (k)),

as the ironed value function, and the value of the problem of maximizing
´ k̄
k
V (k)y(k)dF (k)

is the same as the original one. Thus, the Lagrangian is maximized at

y⋆(k) = 1{V (k)≥0}.

This solution is feasible (non-increasing) since the ironed value function is non-increasing. Let

k⋆ be the largest k such that V (k) = 0. Then, y⋆(k) = 1{k≤k⋆}, and the optimal mechanism

is to offer a payment k⋆ for the ordeal y = 1.

Assuming that the budget constraint is satisfied, a lump-sum transfer mechanism is

28Existence of a Lagrange multiplier follows from a standard constraint qualification.
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optimal if and only if k⋆ = 0, that is, if and only if V (k) ≤ 0 for all k (and otherwise,

a simple ordeal mechanism is optimal). This condition is equivalent to coΨ(t) being a

decreasing function, which in turn (given that it is a concave closure of Ψ) is equivalent to

Ψ(0) ≥ Ψ(t), for all t. Thus, a lump-sum transfer mechanism is optimal if and only if

ˆ k

k

V (k)dF (k) ≤ 0, (11)

for all k. Dividing both sides by F (k) allows me to rewrite condition (11) as

E[V (k)| k ≤ k′] ≤ 0, ∀k′.

Under the assumption k = 0, we have V (0) = 0. Moreover,

V ′(0) = E[λ| k]− 2E[λ],

so condition (⋆) implies that V (k) is strictly positive for small k. Thus, if (⋆) holds, then

(11) cannot hold, and using an ordeal mechanism is optimal. When V (k) crosses 0 at most

once from above at an interior k, then E[V (k)| k ≤ k′] can be strictly positive for some k′

only if V (k) is positive for all k small enough. But then it must be that V ′(0) ≥ 0, which

requires that condition (⋆) holds as a weak inequality.

Under the conjectured value of the Lagrange multiplier η = E[λ], the above solution is

valid if the budget constraint can be satisfied by choosing some lump-sum transfer u⋆ ≥ 0.

The budget constraint holds whenever there exists u⋆ ≥ 0 such that k⋆F (k⋆) + u⋆ = B,

that is, whenever B ≥ k⋆F (k⋆). In particular, this proves that either mechanism (i) or

mechanism (ii) from Proposition 2b must be optimal when B is sufficiently large.

It remains to consider the case B < k⋆F (k⋆). Since k⋆ > 0 in this case, to prove

Proposition 2a, I must show that using an ordeal is optimal. Since the budget constraint

does not hold with η = E[λ], we must have η > E[λ], and hence it is uniquely optimal to

set u⋆ = 0. But then, since B > 0, budget balance requires y(k) to be strictly positive for a

positive measure of k, so indeed an ordeal is used in any optimal mechanism.

Finally, I finish the proof of Proposition 2b. When B < k⋆F (k⋆), we must have η > E[λ]
and no lump-sum transfer in the optimal mechanism (u⋆ = 0). Following DKA, problem

(OBJ’) can be expressed as maximization over a distribution dy(k), and the solution must

satisfy a single linear constraint (10). By Doval and Skreta (2024), there exists a distribution

with this property that has support of size at most two. This means that the optimal

mechanism offers at most two different difficulties of the ordeal (and no lump-sum transfer),

corresponding to case (iii) from Proposition 2b.
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