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  Abstract 
  A designer relies on a costly screening device to allocate a set of goods, aiming to maximize a social 

welfare function. We provide conditions for one screening device to dominate another. We show 
that the performance of a screening device depends on two channels: (i) targeting effectiveness 
which measures the alignment between the implemented and desired assignments, and (ii) rent 
provision which determines the utilities of agents receiving the goods net of the screening costs. 
We link these two channels to distinct properties of the joint distribution of agents’ characteristics, 
leading to a number of simple empirical tests for comparing screening devices. 
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1 Introduction

Public agencies are often tasked with allocating scarce resources (such as public housing,

financial aid, or medical treatment) to a target population. In many such cases, the goal

is to maximize social welfare, which requires identifying agents with the highest social

values for the resource. This task is typically challenging due to information asymme-

tries: While public agencies may be able to access some data about potential beneficiaries

(e.g., through means testing), they generally lack the information necessary to achieve

perfect targeting. At the same time, the conventional economic solution to the problem

of private information—relying on prices to screen for agents with the highest values—

may fail in such contexts. Monetary transfers are useless for screening when the good

being allocated is money itself (e.g., when allocating financial aid, disability insurance,

or unemployment benefits). Moreover, prices may be unavailable as a tool for political or

ethical reasons (e.g., monetary transfers were generally not used to allocate vaccines dur-

ing the Covid-19 pandemic). Finally, prices may fail to identify agents with the highest

social values when private willingness to pay diverges from the social objective (e.g., in

problems where the designer has redistributive preferences).

For these and other reasons, public agencies may rely on “ordeals” to improve target-

ing. An ordeal is a task that an agent needs to complete in order to be considered for the

allocation of the resource; ordeals are costly for the agent but do not provide any direct

social benefit to anyone. Natural examples include standing in line, filing out compli-

cated forms, dealing with “red tape,” waiting, visiting an office at an inconvenient time,

or traveling to a registration site.1 Such ordeals serve the role of costly screening devices:

They decrease the utility of the eventual beneficiaries of social programs but may raise

social welfare on the net if they improve targeting substantially. For instance, Alatas

et al. (2016) analyze the design of Indonesia’s Conditional Cash Transfer program, and

show that imposing an ordeal of traveling to a registration site may improve the target-

ing of financial aid. Deshpande and Li (2019) demonstrate that the level of congestion

at Social Security Administration field offices affects the targeting of disability programs.

Costly screening may also be induced inadvertently when scarce resources are allocated

for free—the classical example is waiting time in access to public health care (see, e.g.,

Rose 2021, Zeckhauser 2021). During the Covid-19 pandemic in the United States, costly

screening played a role in determining the allocation of vaccines among agents eligible for

vaccination within a given phase—getting a vaccine early often required spending time

1Some of these examples are not “pure” ordeals in that they may serve an additional purpose; for exam-
ple, filling out forms is an inconvenience for the agent but it also provides some information to the agency;
see Kleven and Kopczuk (2011) for an analysis of this case and Section 5.2 for an additional discussion.
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on the phone, monitoring online queuing systems, or traveling to a far-away pharmacy

(or even a different state).

The pervasiveness of costly screening devices in resource allocation problems moti-

vates our main question: What makes one costly screening device better than another?

The primary contribution of the paper is to provide a sufficient condition for a robust

ranking of two screening devices, where robustness is with respect to the level of sup-

ply of the resource being allocated. Our sufficient condition identifies two properties

of a screening device that together determine its welfare consequences. The first one is

targeting effectiveness which measures whether using a given screening device results in

allocating the resources to the “right” agents, that is, those with the highest social values.

The second one is rent provision which measures the surplus of agents that receive the

resource net of the cost of completing the ordeal.

Overview of the model. To explain these findings in more detail, we first sketch our for-

mal model. A mechanism designer has a fixed supply of goods that she allocates to a set

of agents. Allocation can be stochastic and contingent on completing an ordeal, poten-

tially with varying degrees of difficulty or arduousness (e.g., if the ordeal is to wait, the

designer may decide how much the agent needs to wait to obtain a resource of a given

quality). Agents have quasi-linear utilities, and are heterogeneous along three dimen-

sions: their private value for receiving the good, their social welfare weight, and their

per-unit-of-difficulty cost of completing the ordeal. These characteristics are agents’ pri-

vate information but we assume that the designer knows their joint distribution. The goal

of the designer is to maximize social welfare defined as the sum of utilities of all agents

weighted by their welfare weights, net of the costs of completing the ordeal. In particular,

the first best is to allocate the resources to agents with the highest social value—the high-

est product of the private value with the welfare weight. In the second best, the designer

maximizes social welfare over the entire set of incentive-compatible mechanisms, with

the ordeal being the only instrument allowing the designer to screen agents.

In this framework, a costly screening device is modeled as a joint distribution of pri-

vate values, welfare weights, and costs. Comparing two screening devices consists in

comparing the performance of the optimal allocation mechanisms for two joint distri-

butions that have the same marginal distribution of private values and welfare weights.

That is, a given ordeal is identified with the marginal distribution of costs for completing

it and the correlation of these costs with private values and welfare weights. We say that

screening device A dominates screening device B, if the optimal mechanism under the

joint distribution induced by device A achieves a higher level of social welfare than the
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optimal mechanism under the joint distribution induced by device B, regardless of the

level of supply of the good being allocated.

Our main formal result is a sufficient condition for screening device A to dominate

screening device B. The sufficient condition quantifies the effects of the two channels

mentioned previously: targeting effectiveness and rent provision. Formally, targeting ef-

fectiveness is captured by the conditional expectation of social values conditional on a

given rate of substitution—the ratio of the private value of the good to the cost of complet-

ing the ordeal. Rent provision is determined by the dispersion of the distribution of the

rate of substitution. These two statistical objects—the conditional expectation of social

values and the marginal distribution of the rate of substitution—together pin down the

performance of a screening device.

The importance of targeting effectiveness for the performance of a costly screening

device is very intuitive: Incurring the deadweight loss associated with using an ordeal

can be justified only if screening is improved relative to the untargeted allocation of the

resource.2 Below, we illustrate the importance of the less intuitive rent-provision channel

using an example; we show that the designer may opt for a device that achieves worse

targeting provided that it has a more dispersed distribution of the rate of substitution.

An illustrative example. The good being allocated is money, with every recipient awarded

an amount that we normalize to $1. (In this special case of our model, the private value

for the good is by definition 1 for every agent, because we measure private values and

costs in terms of willingness to pay in dollars.) The population of agents has mass 1, but

the designer only has a mass s ∈ (0,1) of money to allocate. Each agent has one of three

possible types, p(oor), m(iddle class), or r(ich), and each type is equally likely. The de-

signer puts a social welfare weight λ = 3 on agents with type p, λ = 1 on agents with type

m, and λ = 0 on agents with type r.

There are two screening devices available, A and B, with per-unit-of-difficulty costs ci ,

i ∈ {A, B}, as in Table 1, where ε is a small positive number.

To simplify calculations, suppose that s = 2/3, so that the designer has enough money

to give a dollar to each agent in two out of the three groups. The first best (under perfect

information) would be to give money to agents in groups p and m, generating a total

social surplus of (1/3) ·3+(1/3) ·1 = 4/3. When types are unobserved, without a screening

device, the designer can allocate money randomly generating a total social surplus of

(2/3)((1/3) · 3 + (1/3) · 1 + (1/3) · 0) = 8/9.

Next, consider using a costly screening device i ∈ {A, B}: The designer gives money

2This point was made in the literature at least as early as Nichols and Zeckhauser (1982).
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cA cB λ

p 1− 2ε ε 3
m 1− ε 2 1
r 1 1 0

Table 1: Screening device A is more correlated with the social values, while screening
device B has a higher dispersion of costs

conditional on completing an ordeal with some difficulty y > 0. Since an agent’s private

benefit from getting a dollar is 1, she will complete the ordeal if her utility 1 − ciy is

positive, generating λ(1− ciy) of social surplus. (Note that the rate of substitution in this

example is simply 1/ci .)

Ordeal A achieves perfect targeting: The designer is able to target monetary transfers

to agents in groups p and m by setting the difficulty of ordeal A to be y = 1 (the lowest

difficulty that disincentivizes agents with type r to apply). Ordeal B, in contrast, allocates

money to groups p and r (by setting the difficulty of the ordeal to be y = 1/2), since in this

case agents in group m find it more costly to apply than agents in group r.

However, it is easy to see that screening device B is better for the designer than screen-

ing device A: Using ordeal A leads to total social surplus (1/3) · 3 · (2ε) + (1/3) · ε = (7/3)ε

(in fact, ordeal A is worse than random allocation for small enough ε), while using ordeal

B leads to total social surplus (1/3) · 3 · (1− ε(1/2)) = 1− ε/2.

Intuitively, screening device B outperforms device A because it gives more net utility

to the agents conditional on allocation. The key observation is that costs are more dis-

persed under device B. This means that low-cost agents can be separated from high-cost

agents at a low utility cost to the former; in contrast, device A achieves separation at the

cost of suppressing the net utility of the recipients almost to zero. This effect—which has

nothing to do with targeting—is what we called the rent-provision channel.

We conclude the example with a few comments. First, the rent-provision channel is

invariant to the absolute level of the costs. If we multiply all costs under ordeal B by

an arbitrary constant b > 0, the only change is that the difficulty is set to 1/(2b) instead

of 1/2, resulting in exactly the same welfare consequences. Second, we assumed that

the difficulty of the ordeal is set to “clear the market”; however, the ranking is the same

when the designer uses an optimal mechanism instead. Third, while assuming s = 2/3

was convenient for calculations, as long as ε is low enough, ordeal B strictly outperforms

ordeal A for any supply s ∈ (0, 1).
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Economic implications. Our results formalize the intuition of the simple example by

defining a notion of dispersion of the rate of substitution. Holding fixed the targeting

effectiveness of a screening device, increasing the dispersion of the rate of substitution

raises the maximal social surplus that can be generated by a screening device, for any

supply level. In particular, using a costly screening device with low dispersion can lead

to arbitrarily low welfare regardless of its targeting effectiveness, while costly screening

devices with high dispersion may even approach the first-best level of welfare.

The analysis of the two channels affecting the performance of a screening device leads

to two types of insights. First, we provide a few empirical tests that may be used to estab-

lish a robust ranking between two screening devices observed in practice. If some addi-

tional structure is imposed on the joint distribution of values, costs, and welfare weights,

these tests take the form of simple regressions. Second, we derive some high-level pre-

scriptions for policymakers. For example, we establish conditions under which giving

agents a choice between two ordeals (or requiring completion of both) is dominated by

using one of them.

Related literature. The idea that ordeals can be useful in screening in the absence of

monetary transfers is a classical one within economic theory. Nichols and Zeckhauser

(1982) were among the first to point out that, in settings where the designer does not

observe individual characteristics, it may be optimal to use a screening device that is

costly, as long as the costs are sufficiently lower for the target population. To the best

of our knowledge, the sizeable literature on costly screening (for example, Hartline and

Roughgarden 2008, Condorelli 2012, Chakravarty and Kaplan 2013, among many oth-

ers) focused on the optimal design of an allocation mechanism for a fixed costly screening

device.3 Thus, our contribution to the theoretical literature is to provide an intuitive con-

dition for comparing different screening devices. Additionally, we clarify circumstances

under which a costly screening device is outperformed by, or outperforms, monetary

transfers as a screening device.4 Our focus on maximizing social welfare (rather than al-

locative efficiency) follows a growing body of papers on inequality-aware market design

(see, in particular, Condorelli 2013 and Dworczak rO al. 2021).5

There is also a sizable empirical literature on targeting through ordeals (see, for ex-

ample, Alatas et al. 2016; Finkelstein and Notowidigdo 2019; Deshpande and Li 2019).

3Looking at the problem of allocating financial aid, Dworczak (2023) provides a condition under which
a given costly screening device outperforms a lump-sum payment.

4Unlike Yang (2022, 2023), we do not study how to optimally combine price and nonprice screening.
5Our setting is closest to the one studied by Akbarpour rO al. (2023).
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This literature successfully quantified the targeting effectiveness of different ordeals in

the context of various welfare programs using (natural) experiments that perturb the ap-

plication costs. For example, Deshpande and Li (2019) analyzed how quasi-random clo-

sures of SSA field offices—leading to increased travel and congestion costs—affected the

composition and acceptance rates of applicants for disability insurance; Finkelstein and

Notowidigdo (2019) implemented an experimental design in which randomly selected

elderly individuals received assistance in applying for SNAP benefits (a reduction in the

application costs).

We complement the empirical literature in two ways. First, we identify rent provision

as an important channel determining the welfare consequences of using a costly screening

device. Empirical work used various ways to measure welfare impacts in their respective

contexts; however, to the best of our knowledge, the importance of the dispersion in rates

of substitution through the rent-provision channel has not been recognized. Measuring

the quantitative effects of this channel is relatively straightforward—our analysis reveals

that it is analogous to estimating a demand curve in a standard market with money.

Second, empirical analysis is typically limited to studying “local” perturbations to ap-

plication costs that do not affect the welfare program itself. This means that they must

parameterize the extensive margin by putting a social value on the marginal dollar or

unit of resource allocated by the program. Theoretical analysis allows us to focus on the

intensive margin by assuming that the planner selects an optimal allocation mechanism

for any given screening device: A switch to a new screening device induces a change in

the program rules, so that the same number of resources is allocated.6 This perspective

casts new light on what makes a screening device attractive. For example, the absolute

level of the cost becomes irrelevant for welfare (doubling the cost results in halving the

requirements for successful applicants), and what matters instead is the dispersion de-

termining the actual utility cost of obtaining the resource in the optimal mechanism.

2 Model

A designer allocates a set of objects with (potentially) heterogeneous quality to a unit

mass of agents. Each agent has a welfare weight λ ≥ 0 and private value v ≥ 0. The dis-

tribution of (λ,v) is hold fixed and is commonly known. The designer observes neither v

nor λ for any individual agent; the assumption that the welfare weight is unobservable

6We show that the comparison of screening devices remains unchanged if—instead of the optimal
mechanism—the planner selects a mechanism that simply “clears the market” by adjusting the program
requirements so that total demand equals the number of resources available for allocation.
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captures a situation in which the designer has redistributive preferences but does not

perfectly observe who is most in need.7

There is a unit mass of objects. Each object has a quality q ∈ [0,1]. The cumulative

mass of objects with quality less than or equal to q is given by the quality distribution F

on [0,1].8

If assigned an object of quality q, an agent with type (λ, v) gets a payoff vq and the

designer gets a payoff λvq. The value v is measured in monetary units and λ can be

thought of as converting monetary units to social-utility units, that is, λ is the value for

the designer of giving the agent a dollar.9 We will sometimes refer to λv as the agent’s

social value.

If the good being allocated is money, then v ≡ 1, by definition; q should be interpreted

as quantity rather than quality (with an upper bound on an individual allowance normal-

ized to 1), and F can be taken to have mass only at 0 and 1.

We assume that the designer can condition allocations of resources on agents perform-

ing some costly task—an “ordeal.” Crucially, agents may differ in their costs of complet-

ing different types of ordeals, and these costs may be correlated with their other charac-

teristics. We thus identify a costly screening device with the conditional distribution of

costs that it induces in the target population. We assume that these costs are pinned down

up to an intensity (difficulty) level of the task, denoted y (e.g., if the ordeal is waiting, y

measures the amount of time the agent must wait). An agent with cost parameter c incurs

an additive cost cy for completing the ordeal with intensity y, with c interpreted as the

per-unit-of-difficulty cost measured in monetary units.

Formally, a screening device D is a (regular) conditional distribution

D : (λ,v)→ ∆(R++)

that maps a given pair of welfare weight λ and private value v to a distribution of costs

c. That is, D(λ,v) is the distribution of costs for the group of agents with welfare weight

λ and private value v. We may equivalently identify a screening device with the joint

distribution of (λ,v,c) (with the joint distribution of λ and v held fixed across different

screening devices).

7If the designer has access to observable information about agents, the private information in our model
can be interpreted as the residual uncertainty conditional on observable information.

8The assumption that F is a CDF is without loss of generality since we can always add a set of goods
with quality 0.

9We use money to measure values even though monetary transfers are not available to the designer as a
tool. As long as λ is interpreted correctly, it does not matter in which units individual utility is measured—
using monetary units (effectively, willingness to pay) is convenient for interpretations.
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For any screening device D, let

r = v/c

be the induced rate of substitution between the value of allocations and the value of avoid-

ing the costly activity. Let G denote the marginal distribution of r, which we assume has

a continuous, positive density on an interval. Note that a screening device is uniquely

identified by the joint distribution of (λ,v, r). This representation is convenient because r

will fully summarize an agent’s preferences over choices available in any mechanism.

Conditional on a given screening device, the designer chooses, without loss of gener-

ality,10 a (direct) mechanism

(Γ , y) : r→ ∆([0,1])×R+

that maps a reported r to a probabilistic assignment Γ over the set of qualities [0,1] and an

ordeal intensity y ≥ 0. The assumption that y is any non-negative number means that the

designer can freely adjust the difficulty of the costly activity. For a probabilistic assign-

ment Γ , let xΓ (r) :=
∫ 1

0
qdΓ (q | r) denote the expected quality that type r receives.

A mechanism (Γ , y) is feasible if it satisfies (i) incentive-compatibility (IC) and individual-

rationality (IR) constraints:

rxΓ (r)− y(r) ≥ rxΓ (r̂)− y(r̂), for all r, r̂,

rxΓ (r)− y(r) ≥ 0, for all r,

and (ii) the feasibility constraint:

F(q) ≤
∫ r

r
Γ (q | r)dG(r) for all q ∈ [0,1] .

The feasibility constraint states that the distribution of assigned qualities must be first-

order stochastic dominated by the available qualities (i.e., free disposal is allowed).

Let M(D,F) be the space of feasible mechanisms for a given costly screening device

D and supply of quality F. The designer wants to maximize total social welfare over all

feasible mechanisms:

OPT(D,F) := sup
(Γ ,y)∈M(D,F)

ED

[
λ
(
vxΓ (r)− cy(r)

)]
,

10Looking at direct revelation mechanisms that only elicit information about r is without loss of gen-
erality in our setting because r fully pins down an agent’s preference—see Akbarpour rO al. (2023) for a
similar setup and a proof of this claim.
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where OPT(D,F) denotes the optimal value achievable under screening device D and

quality distribution F, and ED indicates that the conditional distribution over c is given

by D. The designer maximizes a standard utilitarian welfare function, with welfare

weights λ applied to the utility of each agent (net of screening costs) expressed in mone-

tary units.

Finally, we say that a screening device D1 dominates another screening device D2 if

OPT(D1,F) ≥OPT(D2,F)

for every quality distribution F on [0,1].11

We require robustness of the comparison between two screening devices to the avail-

able supply of the good. This is motivated by practical considerations since institutions

for allocating public resources are typically persistent and used across multiple instances

of the allocation process. In addition, this robustness notion implies that even when the

designer can choose among different quality distributions F subject to production costs

C(F), the designer prefers the dominating screening device for any production cost func-

tion C : ∆([0,1])→R.

It will also turn out that the ranking is partially robust to relaxing the assumption

that the designer uses an optimal mechanism; for example, our results continue to hold if

the designer uses a mechanism that “clears the market” given the screening device (i.e.,

when difficulty is set to equalize demand with the supply of available resources).

3 Main Results

For any screening device D, we define the welfare index at parameter s ∈ [0,1] to be

W (D,s) :=
∫ 1

s

(
1− G

−1(s)
G−1(t)

)
·E

[
λv | r = G−1(t)

]
dt .

This expression quantifies a combination of two effects, (i) rent provision and (ii) targeting

effectiveness. For intuition, note that the first term,

1− G
−1(s)

G−1(t)
,

11Our results are unaffected if we only consider distributions F supported on {0, 1}, which is the right
assumption when the good being allocated is homogeneous.
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can be interpreted as the rent—utility net of screening costs—of an agent at the t-quantile

of the distribution of the rate of substitution from obtaining quality 1 of the good when

the agent at the s-quantile receives zero utility. The rent is measured in “raw” units of

the allocation probability (the utility of receiving the good at no cost is normalized to 1).

The second term,

V (t) := E
[
λv | r = G−1(t)

]
,

converts these rents into social-welfare units. Thus, V (t) measures how well the allocation

of rents aligns with social preferences. Mathematically, V (t) is the expected contribution

to social welfare of an agent in the t-quantile of the distribution of the rate of substitution.

Our first result states that these two channels together determine when a screening

device dominates another.

Theorem 1. For any two screening devices D1 and D2, if for all s ∈ [0,1]

W (D1, s) ≥W (D2, s) , (1)

then screening device D1 dominates screening device D2.

The proof is in the appendix. Theorem 1 relies on two ideas. First, we can redefine

mechanisms to depend on quantiles rather than values of the agents’ rates of substitution.

This transformation enables us to compare mechanisms across screening devices. Second,

we exploit the mathematical fact that monotone allocation functions can be represented

as probability distributions over a set of one-step functions.

If both screening devices induce assortative matching between rates of substitution

and quality in the optimal mechanism for any supply level, then condition (1) is also

necessary for these screening devices to be robustly ranked.12 However, in general, the

optimal mechanism may feature regions of random allocation; for these cases, condition

(1) need only hold for a subset of s ∈ [0,1] for D1 to dominate D2. Theorem 5 in Ap-

pendix C defines a weakening of condition (1) that is both necessary and sufficient for

two screening devices to be robustly ranked.

Our second main result connects the two channels (rent provision and targeting ef-

fectiveness) directly to the structural properties of screening devices. In particular, we

show that (i) rent provision is characterized by the dispersion of the distribution of rates

of substitution on the log scale, and (ii) targeting effectiveness is characterized by the

12Assortative matching is defined by xΓ (r) = F−1(G(r)), where F−1 is the generalized inverse of the dis-
tribution F of quality. Assortative matching is an optimal mechanism for any F when, for example, the
distribution G has a non-increasing inverse hazard rate and contains 0 in its support, and E[λv|r] is non-
decreasing in r, implying that W (D, s) is concave in s.
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correlation between the rates of substitution and the social values. To state the result, we

use two partial orders. Let ⪯disp denote the dispersive order (Müller and Stoyan 2002): For

any two random variables X and Y with CDFs FX and FY , we write X ⪯disp Y if

F−1
X (t)−F−1

X (s) ≤ F−1
Y (t)−F−1

Y (s) for all 0 < s < t < 1 .

Intuitively, the quantiles of the distribution that is higher in the dispersive order increase

more quickly than the corresponding quantiles of a less dispersed distribution.13 Let

⪯maj denote (an extension of) the majorization order: For two functions h1, h2 ∈ L1(0, 1),

we write h2 ⪯maj h1 if

∫ 1

s
h2(t)dt ≤

∫ 1

s
h1(t)dt, for all s ∈ (0, 1], with equality at s = 0.

When h1 and h2 are non-decreasing, this is the usual majorization order,14 which is equiv-

alent to h1(U ) being a mean-preserving spread of h2(U ) for a uniform random variable U .

Recall that Vi(t) = E
[
λv | ri = G−1

i (t)
]
.

Theorem 2. For any two screening devices D1 and D2, if

(i) log(r2) ⪯disp log(r1),

(ii) V2 ⪯maj V1,

then screening device D1 dominates screening device D2.

The proof is in the appendix. Crucially, conditions (i) and (ii) are orthogonal in the

sense that condition (i) depends only on the marginal distribution of the rates of substi-

tution and condition (ii) depends only on the distribution of social values conditional on

a given rate of substitution.

Condition (i) shows that the suitable measure of dispersion in our model is on the

log scale. This is intuitive given the form of the rent-provision channel in the welfare

index: What matters is the ratio of the quantiles of the distribution, rather than their

difference. Multiplying r by a constant β > 1 increases the dispersion of r but has no

effect on the optimal welfare (the optimal mechanism will simply adjust the difficulty

13The dispersive order is location-invariant in the sense that X ⪯disp Y ⇐⇒ X ⪯disp Y + a for any a ∈R.
Provided that E[X] = E[Y ], the dispersive order implies that Y is second-order stochastically dominated by
X. See Appendix A.1 for further characterizations and properties of the dispersive order.

14Some authors, e.g., Müller and Stoyan (2002), extend the majorization order to functions that are not
non-decreasing by imposing the condition on their monotone rearrangements; that definition would not
work for our purposes.
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level). In contrast, shifting r by a constant has no effect on the dispersion of r, but it

affects the dispersion of log(r) and hence the effectiveness of the screening device. In

particular, uniformly increasing r by a constant makes a screening device worse. The

proof of Theorem 2 directly links the dispersion in log(r) to the rent-provision channel.

Condition (ii) states that a screening device becomes more effective if agents in any

top quantile of the distribution of r have higher average social values (holding fixed the

unconditional distribution of social values). Intuitively, an increase in the majorization

order means that the rate r becomes a more informative signal in the sense that the poste-

rior mean distribution of social values λv (conditional on observing r) is more spread out.

However, unlike in a statistical learning problem, where signals can always be relabeled,

the designer in our problem prefers r to be more positively correlated with λv, which is

taken into account by our extension of the majorization order. To delineate this intuition,

let ⪯cor denote the correlation order (Müller and Stoyan 2002): For any two random vectors

(X1,X2) and (Y1,Y2), we write (X1,X2) ⪯cor (Y1,Y2) if

CX(s, t) ≤ CY (s, t) for all s, t ∈ [0,1] ,

whereCX denotes the copula of (X1,X2).15 Intuitively, a pair of random variables increases

in the correlation order if their correlation becomes more positive at all quantiles. As we

show in Appendix A, (λv,r2) ⪯cor (λv,r1) implies V2 ⪯maj V1. That is, condition (ii) of

Theorem 2 is weaker than requiring an increase in the distribution of social values and

rates of substitution in the correlation order. The proof of Theorem 2 directly links the

correlation of λv and r to the targeting-effectiveness channel.

For a simple illustration of Theorem 2, consider the following example:

Example 1. Suppose that (λ,v,c), and hence (r, λv), is jointly log-normal: log(r)

log(λv)

 ∼N µ1

µ2

 ,  σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 .
By Theorem 2, a screening device becomes more effective when (i) σ1 gets higher (because

log(r) increases in the dispersive order), or (ii) ρ gets higher (because (λv,r) increases in

the correlation order).

15For any joint distribution of (X1,X2) with continuous marginals, their copula is uniquely defined by
CX(s, t) = P

(
X1 ≤ F−1

X1
(s), X2 ≤ F−1

X2
(t)

)
for all s, t ∈ [0, 1]. More generally, Sklar’s theorem implies that a

copula of (X1,X2) always exists. See Appendix A.2 for the general definition and relevant properties of the
correlation order.
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4 Economic Implications

In this section, we explore the economic consequences of our main technical results.

4.1 The limits of costly screening

We first use Theorem 2 to explore the boundaries of how effective costly screening can

be in allocation problems. This analysis expands on the example in the Introduction by

highlighting the role played by the rent-provision channel.

If the supply s of a homogeneous-quality good is fixed, it is easy to see that there exists

a costly screening device that approximates the first-best welfare—defined as the level of

welfare achievable if the designer could directly observe the social values λv (and would

hence give the good to s agents with the highest social values). Suppose that Ds
ε(λ, v) is

a Dirac delta on ε if λv lies in the top s-quantile of the distribution of social values, and

Ds
ε(λ, v) is a Dirac delta on 1 otherwise. Intuitively, the ordeal is “cheap” for agents who

receive the good in the first-best allocation, and costly for all agents who do not. Then,

screening device Ds
ε implements the first-best allocation at a total social cost that is of

order ε.

However, Ds
ε would perform poorly if the supply of the good was different from s,

and in particular would not rank highly in our partial dominance order that requires

robustness to the level of supply. It may therefore come as a surprise that we can construct

a single screening device that approximates the first best regardless of the distribution of

quality (and hence supply level).

Proposition 1. For any ε > 0, there exists a screening device Dε such that, for any quality

distribution F, Dε achieves welfare that is within ε of first-best welfare.

We emphasize that the approximation of first-best welfare is uniform in the distribu-

tion of quality: Fixing any ε > 0, Dε implements the first-best allocation at a total social

cost that is less than ε, no matter what the distribution of quality is. Of course, the op-

timal mechanism will depend on the distribution of quality, but for the screening device

Dε, it suffices to always use the “market-clearing mechanism” which, for any level of qual-

ity, sets the difficulty of the ordeal to the level that equates supply and demand, achieving

assortative matching between r and q (see Footnote 12 for a formal definition).

The proof (in the appendix) constructs Dε explicitly by exploiting the two channels

that we identified in Theorem 2: (i) Dε achieves perfect targeting by making r a strictly

increasing function of λv, and (ii) the distribution of r becomes increasingly dispersed

(on the log scale) as ε decreases. For intuition, note that, for any screening device D, if

14



we consider a screening device D̃ defined by r̃ = rβ where β > 1, then D̃ will dominate D

(since the copula of the joint distribution of the rates and social values is unaffected, but

r̃ has a higher dispersion on the log scale).

Finally, we establish a partial converse to Proposition 1 by showing that the rent-

provision channel alone can make any screening device (even one achieving perfect tar-

geting) arbitrarily bad.

Proposition 2. For any screening device D and any ε > 0, there exists a screening device Dε
such that (i) Dε achieves (weakly) better targeting effectiveness than D in that V ⪯maj Vε;
and (ii) for any quality distribution F, Dε achieves social welfare that is less than ε under the

assortative-matching allocation rule.

The proof uses a similar construction as in the proof of Proposition 1 but takes the

dispersion of log(r) to be sufficiently small rather than sufficiently large. As the dispersion

vanishes, the rents of all agents under assortative matching converge to 0, and so does

welfare regardless of how well the allocation is targeted.16

4.2 Empirical tests

The two key statistical objects, (i) the dispersion of log(r) and (ii) the correlation of r with

λv, can be estimated given sufficient data, under an appropriate structural assumption

about social preferences (e.g., tying welfare weights λ to some observable characteristics).

In this section, we provide a series of simple empirical tests as applications of our main

results.

First, we show that measuring the dispersion of log(r) is analogous to estimating the

price elasticity of a demand curve in a standard market with money. For any screening

device D, let

P (D,s) := G−1(1− s)

be the “inverse demand curve” for quality 1 of the good in the units of ordeal intensity

y. The “ordeal elasticity” of demand, analogous to the price elasticity of demand, is then

given by

η(D,s) :=
[dlogP (D,s)

dlogs

]−1
.

For an illustration, suppose that the ordeal is waiting, and y measures the amount of time

the agent must wait. Then, the ordeal elasticity η measures the percentage reduction in

demand for quality-1 goods given a 1% increase in the wait time.
16Of course, for ε small enough, the designer will not induce assortative matching under the screening

device Dε; the optimal mechanism will instead allocate goods randomly without any ordeal.
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Proposition 3. For any two screening devices D1 and D2, log(r2) ⪯disp log(r1) if and only if

η(D2, s) ≤ η(D1, s) for all s ∈ (0,1).

The proof is in the appendix. Proposition 3 shows that an empirical researcher could

leverage standard demand estimation techniques in our setting by exploiting the varia-

tion in the quantity demanded given different levels of ordeal requirements.17

Next, we provide a series of simple regression tests.

Proposition 4. If two screening devices D1 and D2 satisfy

log(r2) = β log(r1) + ε

for some β ∈ [0,1] and random variable ε that is independent of (λv,r1), then screening device

D1 dominates screening device D2.

Proposition 4 says that a researcher can run a simple one-sided empirical test by re-

gressing log(r2) on log(r1) to determine the relative performance of two screening devices,

provided that the two screening devices sort the agents in the same way up to idiosyn-

cratic preference shocks.

The proof is in the appendix. Intuitively, a smaller coefficient β in Proposition 4 leads

to a smaller dispersion of log(r2). However, the effect of adding an idiosyncratic prefer-

ence shock ε is ex-ante ambiguous: It increases the dispersion of log(r2) but decreases the

correlation of r2 and λv. In general, when the rent-provision and targeting-effectiveness

channels go in opposite directions, whether a screening device dominates another de-

pends on the precise trade-off that is characterized in Theorem 1. Nevertheless, the proof

shows that when an increase in the dispersion of rates of substitution is due to idiosyn-

cratic preference shocks that are unrelated to social values, the trade-off is always re-

solved in favor of the targeting-effectiveness force. Intuitively, under screening device

D2, one can consider a “relaxed problem” in which the designer observes the noise term

ε (which can only improve the performance of D2). Conditional on observing ε, for each

of these subproblems, Theorem 2 implies that the designer does no better than using

screening device D1.

Proposition 5. Consider any screening devices D1 and D2 that satisfy

log(ri) = βi log(λv) + εi
17To the best of our understanding, the (natural) experiments of Alatas et al. (2016); Finkelstein and

Notowidigdo (2019); Deshpande and Li (2019) would be sufficient to measure the ordeal elasticity at some
points s.
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for random variables εi ∼N (0,σ2
i ) that are independent of λv. If

(i) β1 ≥ β2

(ii) σ1
β1
≤ σ2
β2

then screening device D1 dominates screening device D2.

The proof is in the appendix. Note that in part (ii) of Proposition 4, the ratio σ/β is

smaller if and only if the R-squared Var(β log(λv))/Var(β log(λv)+ε) of the regression equa-

tion is higher. Proposition 4 says that a researcher can also run a simple empirical test by

regressing log(r) on log(λv) and looking at both (i) the slope and (ii) the R-squared to de-

termine the relative performance of two screening devices, provided that the error term

in the regression is independent of the social values. Both the slope and the R-squared

must be taken into account in this setting because of the two forces we identified. Intu-

itively, a larger slope means more variation in the rates of substitution across groups of

different social values, and a larger R-squared means less variation in the rates of sub-

stitution within groups of different social values. This is consistent with the intuition

provided in Proposition 4 and further refines the intuition in Theorem 2: A screening

device is better if it induces more dispersion in the rates of substitution that is due to sys-

tematic variation across groups of different social values rather than due to idiosyncratic

preference shocks.

4.3 Combining screening devices

In practice, different types of ordeals may be used jointly to guide the allocation of re-

sources. For example, applying for a driver’s license in the US requires traveling to a

DMV site and then waiting in line. In other contexts, such as applying for Social Security

Disability Insurance, the applicants can choose between visiting an office, making a phone

call, or filling out an online form.18

We can accommodate combinations of screening devices in our model as follows. For

two screening devices D1,D2, with units of difficulty y1 and y2, respectively, an additive

scoring rule scores the agents by creating a new unit of difficulty

y3 = y1 + βy2

18As pointed out in Deshpande and Li (2019), filing a claim online may be quite costly, especially for
applicants with low education and earnings levels; the forms tend to be complicated, and the first two
methods allow the applicant to be assisted by a social security officer.
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where β > 0 is a constant. Given an additive scoring rule, the two tasks are substitutes and

hence the agents only perform the cost-effective task for them. Thus, an additive scoring

rule induces a new screening device D3 defined by

c3 = min
(
c1, c2/β

)
.

Alternatively, a minimum scoring rule scores the agents by creating a unit of difficulty

y3 = min
(
y1,βy2

)
,

where β > 0 is a constant. Given a minimum scoring rule, the two tasks are complements

and hence the agents always perform both tasks. Thus, a minimum scoring rule induces

a new screening device D3 defined by

c3 = c1 + c2/β .

The following result provides conditions under which social welfare is reduced by giv-

ing agents a choice between screening devices or by bundling them together.

Proposition 6. Consider two screening devices D1 and D2 that satisfy r2 = ψ(r1, ε) for some

random variable ε independent of (λv,r1) and some continuously differentiable function ψ such

that 0 ≤ dlogψ(r,ε)
dlogr ≤ 1 for all r, almost surely in ε. Let D3 be any screening device induced by

an additive scoring rule (choosing between tasks) or a minimum scoring rule (bundling tasks).

Then, screening device D1 dominates screening device D3.

The proof is in the appendix. The condition in Proposition 6 is a generalization of

that in Proposition 4, and implies that, conditional on any realization of the idiosyncratic

noise ε, (i) log(r2) is less dispersed than log(r1), and (ii) (λ,r2) has the same copula as

(λ,r1). By Theorem 2, this implies that screening device D1 dominates screening device

D2. The proof then shows that every additive or minimum scoring rule preserves this

condition.

Proposition 6 is limited in that it only states that a dominating screening device does

not improve when it is combined with a dominated one (either by giving agents a choice,

or by requiring them to complete both tasks). In general, taking the sum or the minimum

of costs associated with different (potentially non-ranked) ordeals will tend to reduce the

dispersion in the left tail of the distribution, and thus have a negative effect through the

rent-provision channel. However, a comprehensive analysis of combinations of screening

devices requires studying the joint distribution of (c1, c2, λ, v), and is beyond the scope of
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this paper.

4.4 Allocating money

In many allocation problems involving ordeals, the good being allocated is money. In our

model—because we chose to measure all values in monetary units—allocating money

corresponds to assuming that v ≡ 1. In this special case, some of our results become

easier to apply and interpret.

Corollary 1. Suppose that v ≡ 1. Then, if two screening devices D1 and D2 satisfy

log(c2) = β log(c1) + ε

for some random variable ε that is independent of (λ,c1), and some β ∈ [0,1], then screening

device D1 dominates screening device D2.

Corollary 1 is a special case of Proposition 4. When the planner allocates money,

running the regression only requires estimating agents’ costs for completing the ordeal,

and the conditions for the validity of the test become more plausible. Moreover, the

result is easier to interpret. For example, in the special case of β = 1, Corollary 1 states

that adding independent noise to the cost makes a screening device worse. Suppose that

the ordeal is waiting, and the planner considers introducing some amenities that will

make the experience of waiting less unpleasant. As long as the associated reduction in

individual waiting costs is not systematically related to welfare-relevant characteristics,

introducing the amenities will tend to reduce welfare.19

Corollary 2. Suppose that v ≡ 1. Consider two screening devices D1 and D2 that satisfy c2 =

ψ(c1, ε) for some random variable ε independent of (λ,c1) and some continuously differentiable

function ψ such that 0 ≤ dlogψ(c,ε)
dlogc ≤ 1 for all c, almost surely in ε. Let D3 be any screening

device induced by an additive scoring rule (choosing between tasks) or a minimum scoring rule

(bundling tasks). Then, screening device D1 dominates screening device D3.

Corollary 2 is a special case of Proposition 6. The assumptions for the result hold, for

example, when either (i) c2 is independent of (λ,c1) or (ii) c2 is comonotonic with c1 and

log(c2) ⪯disp log(c1). For example, forcing agents to complete an additional ordeal whose

cost is unrelated to welfare-relevant characteristics leads to a decrease in social welfare.

A simple consequence of Corollary 2 is as follows.

19Of course, this is because a reduction in costs in our model implies that the difficulty of the ordeal
(waiting time) must be increased to equalize supply and demand.
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Corollary 3. Suppose that v ≡ 1. Consider screening devices D, D1, and D2 satisfying c1 =

c − k1, and c2 = min(c,k2), where k1, k2 > 0. Then, screening device D1 dominates screening

device D which in turn dominates screening device D2.

Corollary 3 further highlights the fact that decreasing the costs of the ordeal can have

ambiguous effects on welfare; what matters is how the reduction in costs affects the rent-

provision channel. For intuition, recall that costs are measured in monetary units, so

we can interpret constants k1 and k2 as representing monetary outcomes. Reducing the

costs of the ordeal by a constant k1 (e.g., by eliminating a fee that agents had to pay to a

third party) is welfare-enhancing. Letting agents pay an amount of money k2 instead of

completing the ordeal (e.g., by “delegating" completing the ordeal to a third party, when

the market price for such a service is k2) is welfare-reducing. This is because these two

changes have a different effect on the dispersion of costs on the log scale.

5 Concluding Remarks

We provided conditions to robustly compare different screening devices. We highlighted

two main forces that drive the performance of a screening device: (i) targeting effective-

ness and (ii) rent provision. We showed that these two forces are respectively charac-

terized by (i) the correlation between the rates of substitution and the social values and

(ii) the dispersion in the marginal distribution of the rates of substitution. We applied

this decomposition to provide a series of simple empirical tests that could be useful in

practice. We conclude the paper by discussing a few additional points and extensions.

5.1 Costly screening versus money

In the vast literature on screening in market-design contexts, costly screening (sometimes

referred to as “money burning") is typically motivated by citing various institutional,

ethical, and technological reasons for why monetary transfers might not be available (see,

for example, Hartline and Roughgarden 2008, Condorelli 2012, Chakravarty and Kaplan

2013). In this section, we show that screening via ordeals in a setting with welfare weights

should not be regarded as a “third-best” solution that may only be used when monetary

transfers are infeasible; in fact, costly screening may dominate monetary transfers as a

screening device.20

20We do not consider the problem of whether and how monetary transfers can be combined with costly
screening—see Yang (2022) for a recent contribution along these lines.
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Monetary transfers can be considered as a screening device DM that has costs c iden-

tically equal to 1 (because we measure costs in monetary units). The only qualitative

difference to a costly screening device in our framework is that using money has the ad-

ditional benefit of raising revenue which can then be redistributed back to agents through

a lump-sum transfer.21 Effectively, costs incurred by agents can be recovered, which is

what makes money “not costly" as a screening device. To model this, when using money

to screen, we can let the designer solve

OPTM(F) := sup
(Γ ,y)∈M(DM ,F)

E
[
λ
(
vxΓ (v)− y(v)

)]
+E

[
λ
]
·E

[
y(v)

]
,

where the first term is the same as for any other screening device (with c ≡ 1) and the

second term captures the benefit of redistribution through lump-sum transfers. We say

that screening device D strictly dominates monetary transfers if

OPT(D,F) ≥OPTM(F)

for every quality distribution F on [0,1] and the inequality is strict for at least some F.

Proposition 7. There exists a distribution of (λ,v) such that using monetary transfers is

strictly dominated by some costly screening device D. There also exists a distribution of (λ,v)

such that using monetary transfers strictly dominates every costly screening device D.

The proof is in the appendix. Consider part (i) of Proposition 7 first. A simple ex-

ample in which monetary transfers are strictly dominated is when v ≡ 1 and there is

some dispersion in λ—money is useless as a screening device when the designer allocates

money itself. Beyond this trivial case, the proof provides an example in which there is

variation in v (so that money can be used to screen), but there is a strong positive cor-

relation between λ and v. Because agents with high welfare weights end up paying the

most (while only receiving part of the money back as a lump-sum transfer), welfare is

bounded away from the first-best welfare achievable without monetary transfers. On the

other hand, using a similar construction as in Proposition 1, we show that there exists

a costly screening device with sufficiently good targeting effectiveness and sufficiently

dispersed rates of substitution that can get arbitrarily close to the first best.

In light of Proposition 1, the second part of Proposition 7 may actually be seen as more

surprising. The key observation is that—with monetary transfers available—allocating

the good to agents with the highest λv at no cost is no longer the first best in general.

21We could allow for other productive uses of money without affecting our conclusions.
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The proof considers a case when λ and v are non-degenerate random variables, but they

are negatively correlated so that λv ≡ 1. Then, the designer is indifferent between agents

when allocating the good, and therefore cannot benefit from using any costly screening

device. However, the designer is not indifferent between agents when it comes to allo-

cating money, since there is dispersion in λ. When using monetary transfers to screen,

the designer sells to agents with high v and redistributes the revenue as a lump-sum

payment, which means that agents with high λ receive a net positive monetary transfer.

Thus, the designer improves welfare by redistributing money.

5.2 Extensions

Nonoptimal mechanisms. When comparing screening devices, we assumed that the de-

signer chooses an optimal allocation mechanism for each screening device. However, our

results also apply if the designer uses certain market and rationing mechanisms that need

not be optimal. Consider the class of α−market mechanisms, for any α ∈ [0, 1], that allo-

cate a mass α of goods with the highest qualities under distribution F using assortative

matching between qualities and rates of substitution (the market mechanism), and allocate

the remaining goods uniformly at random to agents who do not complete any ordeal (the

rationing mechanism). In particular, the market mechanism arises if difficulty levels of

the ordeal are adjusted endogenously to equalize demand and supply for every quality

level.22 Both Theorem 1 and Theorem 2 continue to hold if the designer uses an α−market

mechanism. In fact, condition (1) in Theorem 1 is both sufficient and necessary for one

screening device to dominate another when the designer uses the market mechanism.

Endogenous quality distributions. In the model, the quality distribution was assumed

to be exogenously given. However, as explained earlier, our results are unaffected if the

quality distribution F is optimally chosen (for any screening device) by the designer sub-

ject to a production cost function C : ∆([0,1])→R. All of our results hold for any produc-

tion cost functions C : ∆([0,1])→R.

For one screening device to dominate another, we required that they are ranked in the

same way for all quality distributions F ∈ ∆([0,1]) (or, equivalently, for all supply levels of

a homogeneous-quality good). More generally, one may define the notion of dominance

to be with respect to a subset of quality distributions F ⊆ ∆([0,1]), which is particularly

natural when producing many goods of high quality is prohibitively costly. Moreover, the

designer may have prior knowledge about supply at the time of choosing between ordeals.

22This is a particularly natural assumption for ordeals involving waiting time; see Ashlagi et al. (2022).
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Because our analysis focused on sufficient conditions, our results continue to hold for any

F . However, this extension would lead to a more complete ordering of costly screening

devices. For example, if F is the set of distributions on {0, 1} such that the mass on 1

does not exceed s̄ (supply is at most s̄), then we only need to compare the welfare index

W (D,s) in Theorem 1 for all s ∈ [1− s̄, 1].

Partially productive ordeals. Ordeals in our analysis were assumed not to serve any

productive purpose. In particular, the social cost of an agent with welfare weight λ com-

pleting an ordeal with difficulty 1 is λc. One may consider a more general model in which

y units of the task generate a social benefit u · y, where u can be correlated with (λ,v,c).

For example, in guaranteed employment programs (such as the one created by India’s

National Rural Employment Guarantee Act), y is the number of hours worked, and u is

the agent’s productivity (that can be correlated, for example, with welfare weights). In

this more general model, the designer would solve

sup
(Γ ,y)∈M(D,F)

ED

[
λ
(
vxΓ (r)− cy(r)

)]
+ED

[
u · y(r)

]
,

where D is now a mapping from each (λ, v) to a distribution over (c, u).

While we leave this question to future studies, we note that our results can accom-

modate some special cases. When u = E[λ] and c ≡ 1, this setting reduces to that in

Section 5.1 where y is interpreted as a monetary transfer. Moreover, our results continue

to hold when u = αλc for some constant α ∈ (0,1), which can be interpreted as saying that

the benefit is proportional to the social cost.23

References

Akbarpour, M.
rO
P. Dworczak

rO
S. D. Kominers (2023): “Redistributive Allocation

Mechanisms,” Journal of Political Economy (forthcoming).

Alatas, V., R. Purnamasari, M. Wai-Poi, A. Banerjee, B. A. Olken, and R. Hanna (2016):

“Self-targeting: Evidence from a Field Experiment in Indonesia,” Journal of Political

Economy, 124(2), 371–427.

23The welfare index in Theorem 1 would be modified to be W (D,s) :=
∫ 1
s

(
1− (1−α) · G

−1(s)
G−1(t)

)
·V (t)dt. All

of the remaining results remain unchanged.

23



Ashlagi, I., J. Leshno, P. Qian, and A. Saberi (2022): “Price Discovery in Waiting Lists,”

Available at SSRN: https://ssrn.com/abstract=4192003.

Blackwell, D. (1953): “Equivalent Comparisons of Experiments,” Annals of Mathematical

Satistics, 24(2), 265–272.

Chakravarty, S. and T. R. Kaplan (2013): “Optimal Allocation without Transfer Pay-

ments,” Games and Economic Behavior, 77(1), 1–20.

Condorelli, D. (2012): “What Money Can’t Buy: Efficient Mechanism Design with Costly

Signals,” Games and Economic Behavior, 75(2), 613 – 624.

——— (2013): “Market and Non-Market Mechanisms for the Optimal Allocation of

Scarce Resources,” Games and Economic Behavior, 82, 582–591.

Deshpande, M. and Y. Li (2019): “Who Is Screened Out? Application Costs and the

Targeting of Disability Programs,” American Economic Journal: Economic Policy, 11(4),

213–48.

Dworczak, P. (2023): “Equity-Efficiency Trade-Off in Quasi-linear Environments,” Work-

ing Paper.

Dworczak, P. rO S. D. Kominers rOM. Akbarpour (2021): “Redistribution through Mar-

kets,” Econometrica, 89(4), 1665–1698.

Finkelstein, A. and M. J. Notowidigdo (2019): “Take-Up and Targeting: Experimental

Evidence from SNAP,” Quarterly Journal of Economics, 134(3), 1505–1556.

Hartline, J. D. and T. Roughgarden (2008): “Optimal Mechanism Design and Money

Burning,” in Proceedings of the 40th Annual ACM SIGACT Symposium on Theory of Com-

puting, STOC ’2008, 75–84.

Kleven, H. J. and W. Kopczuk (2011): “Transfer Program Complexity and the Take-Up

of Social Benefits,” American Economic Journal: Economic Policy, 3(1), 54–90.

Müller, A. and D. Stoyan (2002): Comparison Methods for Stochastic Models and Risks,

Wiley.

Nichols, A. L. and R. J. Zeckhauser (1982): “Targeting Transfers through Restrictions on

Recipients,” American Economic Review, 72(2), 372–377.

24



Rose, J. L. (2021): “Rationing with Time: Time-cost Ordeals’ Burdens and Distributive

Effects,” Economics & Philosophy, 37(1), 50–63.

Shaked, M. (1982): “Dispersive Ordering of Distributions,” Journal of Applied Probability,

19(2), 310–320.

Shaked, M. and J. G. Shanthikumar (2007): Stochastic Orders, Springer.

Tchen, A. H. (1980): “Inequalities for Distributions with Given Marginals,” Annals of

Probability, 8(4), 814–827.

Yang, F. (2022): “Costly Multidimensional Screening,” Working Paper.

——— (2023): “The Simple Economics of Optimal Bundling,” Working Paper.

Zeckhauser, R. (2021): “Strategic Sorting: The Role of Ordeals in Health Care,” Eco-

nomics & Philosophy, 37(1), 64–81.

A Preliminaries on Stochastic Orders

A.1 Variability orders

For a CDF F, define the generalized inverse of F by

F−1(t) := inf
{
x ∈R : F(x) ≥ t

}
.

Let X and Y be two random variables with CDFs FX and FY , respectively. X is said to be

smaller than Y in the dispersive order (X ⪯disp Y ) if

F−1
X (t)−F−1

X (s) ≤ F−1
Y (t)−F−1

Y (s) for all 0 < s < t < 1 .

The dispersive order is location-invariant in the sense that

X ⪯disp Y ⇐⇒ X + a ⪯disp Y for any a ∈R .

Provided that E[X] = E[Y ], we have (see e.g., Shaked and Shanthikumar 2007)

X ⪯disp Y =⇒ X ⪯mps Y ⇐⇒ Y ⪯ssd X ⇐⇒ F−1
X ⪯maj F

−1
Y ⇐⇒ FY ⪯maj FX ,
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where ⪯mps is the mean-preserving spread order (or the convex order)24 and ⪯ssd is the stan-

dard second-order stochastic dominance.25

A useful fact about the dispersive order is the following characterization:

Theorem 3 (Shaked 1982). For any two random variables X and Y , we have that X ⪯disp Y
if and only if

X
d= φ(Y )

for some non-decreasing function φ that satisfies φ(y′)−φ(y) ≤ y′ − y for all y < y′.

From Theorem 3, it follows easily that for any random variable X, we have

X ⪯disp aX whenever a ≥ 1 , (A1)

and that, for any random variable X, and two differentiable, non-decreasing functions

φ,ψ, we have

φ′(x) ≤ ψ′(x) for all x =⇒ φ(X) ⪯disp ψ(X) . (A2)

The above implies that for any random variable X, and any two differentiable, non-

decreasing functions φ > 0,ψ > 0, we have

φ′(x)
φ(x)

≤
ψ′(x)
ψ(x)

for all x =⇒ logφ(X) ⪯disp logψ(X) . (A3)

A.2 Positive dependence orders

Let X = (X1,X2) be a random vector. Let

H(x1,x2) = P(X1 ≤ x1,X2 ≤ x2)

be the joint distribution function of X. Let F1 and F2 be the marginal cumulative distri-

bution functions of X. The copula C : [0,1]2 → [0,1] of X is a joint distribution function

such that, for all (x1, x2),

H(x1,x2) = C
(
F1(x1), F2(x2)

)
.

Sklar’s theorem asserts that for any joint distribution H , (i) there exists a copula C and

(ii) the copula is unique on Ran(F1) ×Ran(F2).26 If the marginal distributions F1,F2 are

24That is, X ⪯mps Y if E[h(X)] ≤ E[h(Y )] for all convex functions h provided the expectations exist.
25That is, Y ⪯ssd X if

∫ z
−∞FY (y)dy ≥

∫ z
−∞FX(x)dx for all z ∈R.

26When the copula is not unique on [0,1]×[0,1], it suffices to arbitrarily choose a copula for our purposes.
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continuous, then the copula is uniquely defined by

C(x1,x2) =H
(
F−1

1 (x1),F−1
2 (x2)

)
.

For any two random vectors X = (X1,X2), Y = (Y1,Y2), X is said to be smaller than Y in

the correlation order if

CX(s, t) ≤ CY (s, t) for all s, t ∈ [0,1] .

This order is also known as the concordance order or the positive dependence order (Shaked

and Shanthikumar 2007).27

A useful fact about the correlation order is the following characterization:

Theorem 4 (Tchen 1980). For any random vectors X,Y that have the same marginal distri-

butions, we have that (X1,X2) ⪯cor (Y1,Y2) if and only if

E

[
φ(X1,X2)

]
≤ E

[
φ(Y1,Y2)

]
for all supermodular functions φ,

provided the expectations exist.

From Theorem 4, it follows that correlation measures such as Pearson’s r, Kendall’s τ ,

and Spearman’s ρ are all monotone with respect to the correlation order.

From Theorem 4, it also follows that the correlation order is invariant under monotone

transformations. Specifically, for any random vectors X,Y and any two strictly increasing

functions ϕ,ψ, we have

(X1,X2) ⪯cor (Y1,Y2) =⇒
(
ϕ(X1),ψ(X2)

)
⪯cor

(
ϕ(Y1),ψ(Y2)

)
. (A4)

By Theorem 4, note that condition (ii) of Theorem 2, V2 ⪯maj V1, which is equivalent to

E[λv | r2 ≥ G−1
2 (s)] ≤ E[λv | r1 ≥ G−1

1 (s)] for all s ∈ [0,1] ,

is implied by

(λv,r2) ⪯cor (λv,r1)

because φ(x1,x2) := x1 ·1x2≥s is a supermodular function for all s ∈ [0,1].

27This order is usually defined for two random vectors that have the same marginals, which we extend
to potentially different marginals by comparing the copulas rather than the joint distribution functions.
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B Proofs

B.1 Proof of Theorem 1

Fix any screening device D. First, observe that instead of the rate of substitution r, the

designer can equivalently elicit the corresponding quantile t because there is a one-to-one

mapping r = G−1(t). Second, because both the designer and the agents are risk neu-

tral, any feasible probabilistic assignments that give the same expected quality would be

payoff equivalent. Thus, we can directly work with expected quality quantile allocation

x : [0,1] → [0,1]. An agent’s payoff can be written as G−1(t) · x(t) − y(t), after normaliz-

ing by c. By the envelope theorem, letting U [x](t) denote the utility of the agent at the

t−quantile under allocation rule x, we have that

U [x](t) =
∫ t

0
(G−1)′(s)x(s)ds+G−1(0)x(0) , (B1)

where we used the observation that the designer would never want to set y(0) > 0 and

thus U (0) = G−1(0)x(0). This, in particular, implies that U [x] is a linear functional of x.

Note that we can write the objective as

E

[
λv

(
x(t)− 1

G−1(t)
y(t)

)]
=
∫ 1

0
E
[
λv | r = G−1(t)

]
· 1
G−1(t)

U [x](t)dt . (B2)

Moreover, observe also that under the allocation rule x(t) = 1t≥k for any k > 0, we have

U [x](t) = 1t≥k
(
G−1(t)−G−1(k)

)
,

and for k = 0, we have U [x](t) = G−1(t). With (B2), these imply that for x(t) = 1t≥k we may

write the objective as (recalling that V (t) = E[λv | r = G−1(t)])∫ 1

k
V (t) ·

(
1− G

−1(k)
G−1(t)

)
dt (B3)

for any k > 0, and E[λv] for k = 0.

Suppose that condition (1) in Theorem 1 holds for all s ∈ [0,1]. Then by (B3), we have

that ∫ 1

0
V1(t) · 1

G−1
1 (t)

U1[1t≥s](t)dt ≥
∫ 1

0
V2(t) · 1

G−1
2 (t)

U2[1t≥s](t)dt (B4)

holds for all s ∈ (0,1]. For s = 0, the above also holds since they both equal E[λv]. Now
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consider any feasible expected quality quantile allocation x under screening device D2.

Note that x is also feasible under screening device D1 since we are working in the quan-

tile space. By standard arguments, the IC constraints imply that x : [0,1] → [0,1] is a

monotone function. Recall that, by Choquet’s theorem, every monotone function can be

represented as a mixture over functions 1t≥s. In particular, we have the following:

Lemma 1. For every monotone function x : [0,1]→ [0,1], there exists a probability measure

µ ∈ ∆([0,1]) such that for all t ∈ [0,1],

x(t) =
∫
1t≥sdµ(s) .

Let µ be the measure that represents the monotone allocation rule x : [0,1]→ [0,1]. By

linearity of the functionals U1[x] and U2[x], we immediately have that∫ 1

0
V1(t) · 1

G−1
1 (t)

U1[x](t)dt =
∫

[0,1]

(∫ 1

0
V1(t) · 1

G−1
1 (t)

U1[1t≥s](t)dt
)

dµ(s)

≥
∫

[0,1]

(∫ 1

0
V2(t) · 1

G−1
2 (t)

U2[1t≥s](t)dt
)

dµ(s)

=
∫ 1

0
V2(t) · 1

G−1
2 (t)

U2[x](t)dt .

Therefore, by (B2), we must have that the designer’s payoff with the quantile allocation

rule x under D1 is weakly higher than that under D2. Since this holds for every feasible

expected quality quantile allocation rule x, device D1 must dominate device D2.

B.2 Proof of Theorem 2

First, observe that log(r2) ⪯disp log(r1) implies

logG−1
2 (t)− logG−1

2 (s) ≤ logG−1
1 (t)− logG−1

1 (s) for all 0 < s < t < 1 ,

and hence

1−
G−1

2 (s)

G−1
2 (t)

≤ 1−
G−1

1 (s)

G−1
1 (t)

for all 0 < s < t < 1 .

Thus, for all s ∈ [0,1], we have

W (D2, s) =
∫ 1

s

(
1−

G−1
2 (s)

G−1
2 (t)

)
·V2(t)dt ≤

∫ 1

s

(
1−

G−1
1 (s)

G−1
1 (t)

)
·V2(t)dt .
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Now fix any s ∈ [0,1] and write∫ 1

s

(
1−

G−1
1 (s)

G−1
1 (t)

)
·V2(t)dt =

∫ 1

0
1t≥s

(
1−

G−1
1 (s)

G−1
1 (t)

)
·V2(t)dt .

Since

h(t) := 1t≥s
(
1−

G−1
1 (s)

G−1
1 (t)

)
is a monotone function from [0,1] to [0,1], by the representation theorem again (Lemma 1),

there exists a probability measure µ over [0,1] such that for all t ∈ [0,1]

h(t) =
∫

[0,1]
1t≥k dµ(k) .

This implies that

W (D2, s) ≤
∫ 1

0
h(t)V2(t)dt =

∫
[0,1]

(∫ 1

0
1t≥kE

[
λv | r2 = G−1

2 (t)
]
dt
)

dµ(k)

=
∫

[0,1]

(
1− k

)
E
[
λv | r2 ≥ G−1

2 (k)
]
dµ(k)

≤
∫

[0,1]

(
1− k

)
E
[
λv | r1 ≥ G−1

1 (k)
]
dµ(k)

=
∫

[0,1]

(∫ 1

0
1t≥kE

[
λv | r1 = G−1

1 (t)
]
dt
)

dµ(k)

=
∫ 1

0
h(t)V1(t)dt =W (D1, s),

where the inequality follows from the majorization condition V2 ⪯maj V1. Since this holds

for all s ∈ [0,1], screening device D1 must dominate screening device D2 by Theorem 1.

B.3 Proof of Proposition 1

Let

c =
v

exp(γH(λv))
,

where H is the CDF of λv and γ > 0 is a parameter. Then, (λv,r) are comonotonic, and

G−1(t) = exp(γt). This implies that

W (Dγ , s) =
∫ 1

s

(
1− e−γ(t−s)

)
·H−1(t)dt .
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Let Kγ (s) := W (Dγ , s). Let K(s) =
∫ 1
s
H−1(t)dt. First, by the monotone convergence theo-

rem, for any s, we have

lim
γ→∞

Kγ (s) =
∫ 1

s
lim
γ→∞

(
1− e−γ(t−s)

)
·H−1(t)dt =

∫ 1

s
H−1(t)dt = K(s) .

Thus Kγ converges to K pointwise. Now, note that (i) Kγ (s) is continuous in s ∈ [0,1], (ii)

Kγ (s) is monotone in γ , and (iii) K(s) is continuous in s ∈ [0,1]. By Dini’s theorem, the

functions Kγ converge uniformly to K . Thus, for any ε > 0, there exists γ such that for all

s ∈ [0,1], we have ∣∣∣∣Kγ (s)−K(s)
∣∣∣∣ < ε .

Let x(t) = F−1(t) and µ be the probability measure that represents x(t), i.e., x(t) =∫
1t≥sdµ(s) (by Lemma 1). The first-best welfare is given by

∫ 1

0
K(s)dµ(s) .

By the proof of Theorem 1, the welfare under screening deviceDγ and allocation rule x( · )
is given by ∫ 1

0
K̃γ (s)dµ(s) ,

where K̃γ (s) := Kγ (s) if s ∈ (0,1] and K̃γ (s) := E[λv] = K(s) if s = 0. Clearly, for all s ∈ [0,1],

we also have |K̃γ (s)−K(s)| < ε. Thus, we have

∣∣∣∣∫ 1

0
K̃γ (s)dµ(s)−

∫ 1

0
K(s)dµ(s)

∣∣∣∣ ≤ ∫ 1

0

∣∣∣∣K̃γ (s)−K(s)
∣∣∣∣dµ(s) < ε ,

proving the claim.

B.4 Proof of Proposition 2

We use a similar construction as in the proof of Proposition 1. We will construct Dε to

achieve perfect targeting. Let

c =
v

exp(γH(λv))
,
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where H is the CDF of λv and γ > 0 is a parameter. Then, (λv,r) are comonotonic (i.e.,

maximal positive correlation), and G−1(t) = exp(γt). This also implies that

W (Dγ , s) =
∫ 1

s

(
1− e−γ(t−s)

)
·H−1(t)dt .

Let Kγ (s) :=W (Dγ , s). First, by the monotone convergence theorem, for any s, we have

lim
γ→0

Kγ (s) =
∫ 1

s
lim
γ→0

(
1− e−γ(t−s)

)
·H−1(t)dt = 0 .

Thus Kγ converges to 0 pointwise. Now, note that (i) Kγ (s) is continuous in s ∈ [0,1], (ii)

Kγ (s) is monotone in γ . By Dini’s theorem, the functions Kγ converge uniformly to 0.

Let x(t) = F−1(t) and µ be the probability measure that represents x(t), that is, x(t) =∫
1t≥sdµ(s) (by Lemma 1). Note that F−1(0) = 0 and hence x(0) = 0. By the proof of

Theorem 1, this implies that the welfare under screening device Dγ and allocation rule

x( · ) is given by ∫ 1

0
Kγ (s)dµ(s) .

The claim then follows by the same argument as in the proof of Proposition 1.

B.5 Proof of Proposition 3

Note that

log(r2) ⪯disp log(r1)

if and only if

logG−1
1 (s)− logG−1

2 (s) is non-decreasing in s ,

which holds if and only if

d
ds

logG−1
1 (s) ≥ d

ds
logG−1

2 (s) for all s ∈ (0,1) ,

which holds if and only if

d
dlogs

logG−1
1 (1− s) ≤ d

dlogs
logG−1

2 (1− s) for all s ∈ (0,1) ,
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which holds if and only if[ d
dlogs

logG−1
1 (1− s)

]−1
≥
[ d
dlogs

logG−1
2 (1− s)

]−1
for all s ∈ (0,1) .

Note that the left-hand side is exactly η(D1, s) and the right-hand side is exactly η(D2, s).

B.6 Proof of Proposition 4

We will prove a stronger result that we will also need in the proof of Proposition 6.

Lemma 2. Consider two screening devices D1 and D2 that satisfy

r2 = ψ
(
r1, ε

)
for some random variable ε independent of (λv,r1) and some continuously differentiable func-

tion ψ such that 0 ≤ dlogψ(r,ε)
dlogr ≤ 1 for all r, almost surely in ε. Then, screening device D1

dominates screening device D2.

Proof of Lemma 2. Let t1 be the quantile for r1. Let E be the set of ε at which 0 ≤ dlogψ(r,ε)
dlogr ≤

1. By assumption, P(ε ∈ E) = 1. Consider the mechanism design problem under screening

device D2. We can let x(t1, ε) be the allocation rule that elicits reports on (t1, ε). Note that

since x is monotone in ψ(G−1
1 (t1), ε), we have that x( · , ε) is monotone for all ε ∈ E. Suppose

that we let the designer observe ε and then optimize over y. This provides an upper bound

on the designer’s payoff under allocation rule x. By the proof of Theorem 1, the designer’s

payoff in this case is given by

E

λv · 1

ψ(G−1
1 (t1), ε)

(∫ t1

0
∂s
[
ψ(G−1

1 (s), ε)
]
· x(s,ε)ds+ψ(G−1

1 (0), ε)x(0, ε)
)
| ε
 .

By the proof of Theorem 2, this value is bounded from above by

E

λv · 1

G−1
1 (t1)

(∫ t1

0
(G−1

1 )′(s) · x(s,ε)ds+G−1
1 (0)x(0, ε)

)
| ε
 .

because for any ε ∈ E, by (A3), we have

logψ(r,ε) ⪯disp log(r) .
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Thus, the designer’s payoff with x under screening device D2 is bounded from above by

E

λv · 1

G−1
1 (t1)

(∫ t1

0
(G−1

1 )′(s) · x(s,ε)ds+G−1
1 (0)x(0, ε)

) .
Now, note that for any feasible and implementable x(t1, ε), we have that x̃(t1) := Eε[x(t1, ε)]

is feasible and monotone. Moreover, the designer’s payoff with x̃ under screening device

D1 is given by

E

λv · 1

G−1
1 (t1)

(∫ t1

0
(G−1

1 )′(s) ·Eε[x(s,ε)]ds+G−1
1 (0)Eε[x(0, ε)]

) ,
which, by independence, equals the upper bound on the designer’s payoff with x under

screening device D2. Therefore, screening device D1 dominates screening device D2.

Proposition 4 is a special case of Lemma 2 with ψ(r,ε) = exp
(
β log(r) + ε

)
.

B.7 Proof of Proposition 5

First, consider the case where β2 ≤ 0. Note that by Proposition 4, screening device D2 is

dominated by screening device D̃2 defined by

log(r̃2) = β2 log(λv) .

We claim that the optimal mechanism under D̃2 is always full randomization without

costly screening. Indeed, note that

E[λv | r̃2] = exp
( 1
β2

log(r̃2)
)
.

Thus, E[λv | r̃2] is a non-increasing function of r̃2. By the FKG inequality, for any imple-

mentable (and hence monotone) xΓ , we have∫
E[λv | r̃2]

(
xΓ (r̃2)− 1

r̃2
y(r̃2)

)
dG̃2(r̃2) ≤

∫
E[λv | r̃2]xΓ (r̃2)dG̃2(r̃2) ≤ E[λv]E[xΓ (r̃2)] ,

where the welfare E[λv]E[xΓ (r̃2)] is achievable by random allocations without costly

screening. So screening device D̃2, and hence D2, is dominated by screening device D1.
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Now, consider the case where β2 > 0. By assumption, we have

σ2
2 −

(β2

β1
σ1

)2
≥ 0 .

We construct a coupling of (λv,r1, r2) in the following way:

log(r2) =
β2

β1
log(r1) + ξ

where ξ is drawn from

N
(
0, σ2

2 −
(β2

β1
σ1

)2
)

independent of λv and ε1 (and hence independent of (λv,r1)).

We claim that under this coupling, we have that the joint distribution of (λv,r2) is

unchanged. To see this, note that

β2

β1
log(r1) + ξ =

β2

β1

(
β1 log(λv) + ε1

)
+ ξ = β2 log(λv) +

β2

β1
ε1 + ξ

where
β2

β1
ε1 + ξ =: ε̃2

is independent of λv and follows a normal distribution with mean 0 and variance

(β2

β1
σ1

)2
+ σ2

2 −
(β2

β1
σ1

)2
= σ2

2 .

Therefore, we have (
log(λv), log(r2)

) d= (
log(λv),

β2

β1
log(r1) + ξ

)
.

Finally, note that by Proposition 4, any screening device D satisfying

log(r) =
β2

β1
log(r1) + ξ

is dominated by screening device D1 since (i) β2
β1
∈ [0,1] and (ii) ξ is independent of

(λv,r1). The result follows.
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B.8 Proof of Proposition 6

We will show that the condition in Lemma 2 (stated in the proof of Proposition 4) is

preserved under any additive or minimum scoring rules.

Additive scoring rule: Let D3 be induced by any additive scoring rule. Then, we have

c3 = min
(
c1, c2/β

)
and hence

1
r3

=
c3

v
= min

(c1

v
,

1
β
· c2

v

)
= min

( 1
r1
,

1
β
· 1
r2

)
.

Let

ψ̃(r,ε) :=
1

min
(

1
r ,

1
β ·

1
ψ(r,ε)

) .
Then

log ψ̃(r,ε) = −min
(
− log(r), − log(β)− logψ(r,ε)

)
= max

(
log(r), log(β) + logψ(r,ε)

)
.

Let E be the set of ε at which 0 ≤ dlogψ(r,ε)
dlogr ≤ 1. Fix any ε ∈ E. By the envelope theorem,

the above implies that we have almost everywhere

dlog ψ̃(r,ε)
dlogr

∈
{
1,

dlogψ(r,ε)
dlogr

}
.

Thus, we have almost everywhere

0 ≤
dlog ψ̃(r,ε)

dlogr
≤ 1 .

This implies that screening device D1 dominates screening device D3 by Lemma 2.

Minimum scoring rule: Let D3 be induced by any minimum scoring rule. Then, we

have
1
r3

=
c3

v
=
c1

v
+

1
β
· c2

v
=

1
r1

+
1
β
· 1
ψ(r1, ε)

.

Let

ψ̃(r,ε) :=
1

1
r + 1

β ·
1

ψ(r,ε)

.

Then

log ψ̃(r,ε) = − log
[1
r

+
1
β
· 1
ψ(r,ε)

]
.
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Fix any ε ∈ E. Note that

0 ≤
dlog ψ̃(r,ε)

dlogr
=

dlog ψ̃(r,ε)
dr

· dr
dlogr

=
−(1

r )′ − 1
β ·∂r

[
1

ψ(r,ε)

]
1
r + 1

β ·
1

ψ(r,ε)

· r ≤ 1
r
· r = 1 .

where the second inequality follows by two observations: First, we have

−(1
r )′

1
r

= − d
dr

log(
1
r

) =
d
dr

log(r) ≥ d
dr

logψ(r,ε) = − d
dr

log(
1

ψ(r,ε)
) =
−1
β ·∂r

[
1

ψ(r,ε)

]
1
β ·

1
ψ(r,ε)

since 0 ≤ dlogψ(r,ε)
dlogr ≤ 1. Second, recall that the mediant inequality implies that

a+ b
c+ d

≤max
{a
c
,
b
d

}
for any positive numbers a,b,c,d.

Thus, screening device D1 dominates screening device D3 by Lemma 2.

B.9 Proof of Proposition 7

We first prove the second claim. Suppose that v ∼ U [1,2] and v = 1
λ . Note that since

λv ≡ 1, any screening device D must induce r that is independent of λv. Therefore, under

any screening deviceD, the optimal mechanism is always full randomization (with y = 0).

Thus, it suffices to show that there exists some F such that money does strictly better.

Consider a setting in which there is a mass s ∈ (0,1) of quality-1 goods to be allocated. Let

the price be 2− s. The payoff to the designer is then∫ 2

1

1
v

(v − 2 + s)1v≥2−sdv + s · (2− s) ·E
[1
v

]

= s −
∫ 2

1

2− s
v
1v≥2−sdv + s · (2− s) ·E

[1
v

]
.

Note that

E

[1
v

]
>

1
s

∫ 2

2−s

1
v

dv

and therefore the payoff of this mechanism to the designer is strictly higher than s, which

is the payoff to the designer under full randomization. This proves the second claim.
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Now, we prove the first claim. Consider the setting where v = λ =
√
t and t ∼ U [0,1].

The welfare of using money to allocate a mass 1− s of quality-1 goods under the market

mechanism x(t) = 1t≥s is given by

M(s) :=
∫ 1

s

√
t
(√
t −
√
s
)
dt +

(∫ 1

0

√
tdt

)√
s(1− s) =

1
6

(s2 − 4
√
s+ 3) +

2
3

√
s(1− s) .

The welfare of using screening device Dα defined by

c =
v

(λv)α

for parameter α > 0 under the market mechanism x(t) = 1t≥s is given by:

W (D,s) =
∫ 1

s

(
1− G

−1(s)
G−1(t)

)
·E

[
λv | r = G−1(t)

]
dt =

∫ 1

s
t − t ·

(s
t

)α
dt =

1
2

(
1− αs

2 − 2sα

α − 2

)
.

One can verify that for sufficiently large α, the concave envelope ofW (D,s) is everywhere

above the concave envelope of M(s) and strictly so for some s ∈ (0,1). By the proof of

Theorem 5 in Appendix C, this example then proves the first claim.

C Additional Results

For any function h : [0,1]→R, let co(h) be the concave envelope of h, i.e.,

co(h)(s) := inf
{
k(s) : k is concave and k ≥ h

}
.

The next result provides a necessary and sufficient condition for one screening device to

dominate another.

Theorem 5. A screening device D1 dominates screening device D2 if and only if, for all s ∈
[0,1],

Ŵ (D1, s) ≥ Ŵ (D2, s) , (C1)

where

Ŵ = co(W0)

and

W0(D,s) =

W (D,s) if s ∈ (0,1]

E[λv] if s = 0 .

Proof of Theorem 5. We follow the notation in the proof of Theorem 1.

38



The “if” part: Suppose that condition (C1) in Theorem 5 holds for all s ∈ [0,1]. Note

that, by (B3) in the proof of Theorem 1, we have

W0(D,s) =
∫ 1

0
V (t) · 1

G−1(t)
U [1t≥s](t)dt ,

which is the designer’s payoff under a quantile allocation rule 1t≥s.

Now, consider any feasible expected quality quantile allocation rule x : [0,1]→ [0,1] .

As in the proof of Theorem 1, the set of feasible allocation rules x is the same across the

two screening devices D1 and D2. Moreover, as in the proof of Theorem 1, by Lemma 1,

there exists a probability measure µ ∈ ∆([0,1]) such that for every t ∈ [0,1]

x(t) =
∫

[0,1]
1t≥sdµ(s) .

Thus, we can identify a quantile allocation rule x by a probability measure µ. Thus, by

the argument in the proof of Theorem 1, it suffices to show that

sup
µ2∈L

∫
[0,1]

W0(D2, s)dµ2(s) ≤ sup
µ1∈L

∫
[0,1]

W0(D1, s)dµ1(s)

where L is the set of probability measures that would satisfy the feasibility constraint.

For any µ ∈ L, we claim that if µ ⪯mps µ̃, then we also have that µ̃ ∈ L. That is, any mean-

preserving spread of the measure µ also induces a feasible allocation rule. To see this,

note that for any z ∈ [0,1], we have∫ 1

z
x(t)dt =

∫ 1

z

∫ 1

0
1t≥sdµ(s)dt =

∫ 1

0
1−max{z, s}dµ(s) ≥

∫ 1

0
1−max{z, s}dµ̃(s) =

∫ 1

z
x̃(t)dt

where the inequality is due to that 1 −max{s,z} is concave in s and µ ⪯mps µ̃. Moreover,

note that the above holds with equality when z = 0. Thus, we have x̃ ⪯maj x. Let X be the

random expected quality induced by the allocation rule x, and X̃ be the random expected

quality induced by the allocation rule x̃. Then, note that X̃ ⪯mps X. By Blackwell (1953),

there exists a coupling of (X,X̃) such that E[X | X̃] = X̃ . This implies that x̃ is a feasible

expected quality allocation rule, because it can be constructed by a compound lottery

where one further randomizes the quality lotteries that implement x according to the

conditional distribution X | X̃. Therefore, we have µ̃ ∈ L. This implies that

sup
µ2∈L

∫
[0,1]

W0(D2, s)dµ2(s) = sup
µ2∈L

∫
[0,1]

Ŵ (D2, s)dµ2(s)
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≤ sup
µ1∈L

∫
[0,1]

Ŵ (D1, s)dµ1(s) = sup
µ1∈L

∫
[0,1]

W0(D1, s)dµ1(s)

where (i) the two equalities use that for any µ ∈ L and µ ⪯mps µ̃, we have µ̃ ∈ L and (ii) the

inequality uses the condition (C1).

The “only if” part: Note that

Ŵ (D2,0) =W0(D2,0) = E[λv] =W0(D1,0) = Ŵ (D1,0) .

Thus, it suffices to show that (C1) holds for all s ∈ (0,1). Suppose for contradiction that

(C1) is violated at some s ∈ (0,1). Let F(q) be the function s + (1 − s)1q=1, representing a

fixed supply 1− s of quality 1 objects. We claim that with this choice of F,

OPT(D1,F) <OPT(D2,F) .

Indeed, under this choice of F, an expected quality quantile allocation rule x is feasible if

and only if ∫ 1

0
x(t)dt ≤ 1− s .

Now, fix the screening device to be D1. Again, by the representation theorem (Lemma 1),

we may then optimize over probability measures µ such that∫
[0,1]

kdµ(k) ≥ s .

By (B3) and the argument in the proof of Theorem 1, the objective value with measure µ

under screening device D1 is equal to

Ek∼µ
[
W0(D1, k)

]
≤ Ek∼µ

[
Ŵ (D1, k)

]
≤ Ŵ

(
D1,Ek∼µ[k]

)
≤ Ŵ

(
D1, s

)
< Ŵ

(
D2, s

)
,

where the second inequality is due to Jensen’s inequality, and the third inequality is due

to that W0(D1, · ), and hence Ŵ (D1, · ), is non-increasing. By the proof of the “if” part,

the designer under screening device D2 can achieve the welfare of Ŵ (D2, s) using random

allocations. Therefore, we must have OPT(D1,F) <OPT(D2,F). A contradiction.
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