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Abstract 
According to psychology, affective empathy is one of the key processes governing human 
interactions. It refers to the automatic transmission and diffusion of emotions in response to 
others' emotions, which gives rise to emotional contagion. Contrary to other forms of empathy, 
affective empathy has received little attention in economics. In this paper, we augment the 
standard game-theoretic framework by allowing players to affectively empathize. Players' utility 
functions depend not only on the strategy prole being played, but also on the realized utilities of 
other players. Thus, players' realized utilities are interdependent, capturing emotional contagion. 
We offer a solution concept for these empathetic games and show that the set of equilibria is non-
empty and, generically, finite. Motivated by psychological evidence, we analyze sympathetic and 
antipathetic games. In the former, players' utilities increase in others' realized utilities, capturing 
unconditional friendship; whereas in the latter the opposite holds, resembling hostility. 
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1 Introduction

Empathy, a neurological process that is deeply rooted in our brains,1 is the innate capacity to

experience the feelings of others and is an essential building block of social interactions.2,3 It

is associated with mirror neurons that fire when individuals face emotional stimuli, sparking

emotional feedback and contagion.4 Social psychology broadly classifies empathy into two

types: cognitive and affective. Cognitive empathy is a neural ability to rationally recognize

others’ intentions, beliefs, desires, and objectives, and is related to the so-called “Theory

of Mind.” This type of empathy lies implicitly at the heart of game-theoretic models; for

example, psychological games (Geanakoplos et al., 1989) and modern theories of reciprocity

(Rabin, 1993) build on the idea of intention-based preferences.5 By contrast, affective or

emotional empathy relates to the automatic transmission and propagation of emotions in

response to others’ emotions.6 Recent research suggests that the brain processes the rational

ability to infer intentions and emotional empathy in different ways (Kalbe et al., 2010). Yet,

unlike cognitive empathy, formal modeling of affective empathy has received little attention

in economics; see Winter (2014) for a discussion.

An important component of affective empathy is emotional contagion. This process is

“. . . relatively automatic, unintentional, uncontrollable, and largely inaccessible to conversant

awareness. . . ” (Hatfield et al., 2014). In other words, affective empathy causes individuals

to, e.g., unconsciously synchronize their own emotions with those of others, and thus converge

emotionally (Hatfield et al., 1993; Singer et al., 2004). Results in social psychology suggest

that emotional convergence occurs very quickly (in less than one second) during face-to-face

interactions (Iacoboni, 2009). From an economic perspective, it seems that our utilities are

automatically and unintentionally affected by the others’ utilities. Understanding how to

embed affective empathy and emotional contagion into strategic settings is our main goal.

Emotional contagion usually emerges in face-to-face interactions, as human beings are

prone to automatically mimic the expressions, vocalizations, postures and movements of

other people with whom they interact (Hatfield et al., 1993). For instance, when someone

1According to social psychology empathy evolved as a proximate reward mechanism for pro-social behav-
ior, e.g., mutual defense or food sharing, that increased the evolutionary fitness of a given group (Batson,
2011). Its roots are often attributed to parental care that then extend to broader social groups (Hoffman
1987, Batson 1987). Other important evolutionary theories of origins of empathy in humans are inclusive
fitness (Hamilton 1964), reciprocal altruism (Trives 1971), sociality (Caporeal, Daves, Orbell and van de
Kragt 1989), as well as group selection (Sober and Wilson, 1998).

2Human empathy lies at the center of Adam Smith’s “Theory of moral sentiments” (Smith, 1822).
3Recent research studies have found that empathy is a key driver of altruism; see De Waal (2008).
4Neuroscientific studies have shown that the observation of pain experienced by others and the experience

of pain automatically activate similar regions of the brain (Singer et al., 2004; Jackson et al., 2005).
5We provide a more detailed discussion of intention-based preferences in section §6.
6See, e.g., http://greatergood.berkeley.edu/topic/empathy/definition.
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smiles, one tends to spontaneously smile back; likewise, an angry facial expression may

spark an angry expression on another’s face (Hawk et al., 2012). Emotional contagion is

particularly important in settings in which individuals have pre-existing relationships. When

family members, friends, or foes love, like, hate, or envy one another, their emotions may

impact on one another in unexpected ways. The relevance of emotional contagion, however,

may also extend to social interactions with unknown individuals.7 Because the emotions of

one individual, such as happiness and sadness, may propagate to a larger group of individuals

via emotional contagion, a key challenge is to formally model the contagion process.

In this paper, we augment the standard game-theoretic framework by assuming that

players are able to emotionally empathize among themselves. Because the emotions that

give rise to affective empathy transmit automatically, we allow players’ utility functions to

be interdependent as follows. Consider players I whose primitive utility functions, say U ≡
(Ui)i∈I , depend on the strategy profile s ∈ S being played, and also on the realized utilities of

others u−i.
8 A game with affective empathy, or an empathetic game, is a structure 〈I,S,U〉.

This modeling assumption brings new conceptual challenges, since feedback effects associated

with emotional contagion among players’ welfare render standard game-theoretic solution

concepts, such as the Nash equilibrium, inapplicable.

In general, when players’ realized welfare is affected by one another, the basic game-

theoretic framework must be augmented to encompass settings with emotionally empathic

players. Our conceptual contribution begins by endowing players with beliefs regarding other

players’ realized utilities. Next, we demand these beliefs to be consistent with the underlying

interdependent utility system U . This means that, for any strategy profile s, individual beliefs

about others’ utilities can be rationalized by a solution for this utility system U . Intuitively,

the emotional convergence determines players’ realized utilities so that ui(s) = Ui(s, u−i(s))

for all player i.9 Finally, an equilibrium is a pair containing a strategy profile and beliefs

such that the strategies are mutual best responses, given consistent beliefs.

We then offer technical contributions for an arbitrary empathetic game. This is an

important basic step for building a useful framework to perform equilibrium analysis of games

with affective empathy. Because emotional feedback among players can cause emotional

synchronization to explode, we first tackle the questions of existence, (generic) finiteness,

7Recent studies indicate that empathic responses are also elicited even when scanned subjects do not
know the person in pain; see Singer and Fehr (2005).

8An alternative way is to define emotions as “outcomes” and then posit utility functions over these
outcomes and use standard game theoretic tools, as in the material games literature (Sobel, 2005). However,
this approach omits the fact that emotions transmit uncontrollably through a contagion process; see §6-B.

9Interdependent utilities have been used in the economics of the family literature in particular contexts,
without realizing that these preferences can capture a meaningful psychological force, such as primitive
emotional contagion. We provide a more detailed discussion in §6-A.
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and robustness. We establish that under mild technical conditions on the utility functions

— namely, smoothness and boundedness — an equilibrium exists and, typically, there is a

finite number of them (Proposition 1). Thus, our solution concept puts enough discipline

on the endogenous variables, ensuing tight predictions. Proving generic finiteness demands

novel mathematical arguments and is our primary technical contribution. Finally, we show

that while our belief consistency condition requires players to know which solution of the

utility system U is realized at any profile in and out of equilibrium, relaxing this requirement

for the latter has no impact on equilibrium outcomes (Proposition 2).

Next, we proceed to characterize equilibrium outcomes. In general, the emotional feed-

back effects among players can lead to multiple consistent realized utilities for some strategy

profiles. For instance, without changes in behavior, the emotional contagion process may

lead players to either “happiness” or “misery,” depending on this self-reinforcing psycholog-

ical force. As a result, computing equilibria directly from the definition is generally difficult.

We introduce an auxiliary maxmin utility function for each player that depends only on

strategy profiles. These functions give players their best-response utility assuming they have

“pessimistic” beliefs, meaning that whenever their realized utilities take multiple values they

believe their lowest utility will realize. We show that an outcome is an equilibrium only if

players’ realized utilities are at least their maxmin utility level (Proposition 3).

We then study how pre-existing relationships among individuals affect how they perceive

and experience the emotions of others. According to De Waal (2008), empathy can manifest

as either sympathy or antipathy, affecting the emotional contagion process. Our framework

allows us to capture relationships by specifying how the primitive utility functions U are

affected by others’ realized utilities. In sympathetic games, the utility function of each

player rises in others’ utilities, capturing, e.g., unconditional friendship or love. We find

that sympathy, such as love, can indeed lead to perverse outcomes, such as misery for all

parties involved. Specifically, in sympathetic games, players realized utilities are positively

related and prone to take multiple ordered values. Multiplicity, generically, obtains provided

players care less about others as they become more happy, i.e., when marginal sympathy is

diminishing. A novel source of social inefficiency is prone to emerge here, for even if players

choose a strategy profile that potentially maximizes social welfare, their realized utilities may

self-reinforce in an inefficient way. By means of example, we show that since sympathy can

lead to misery, a pair of sympathetic players may prefer to remain unmatched to prevent such

an outcome. Thus, a successful match seems to require an outset mechanism to reduce this

self-reinforcing “social anxiety.” These insights are consistent with psychological evidence,10

which indicates that while love brings happiness, it also may bring misery and anxiety. In

10See www.psychologytoday.com/us/blog/happiness-design/201502/will-love-make-you-happy.
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fact, individuals attracted to one another appear to be more inclined to experience social

anxiety. Altogether, love does not imply happiness, and the old adage that “misery loves

company” appears to hold true.

By contrast, in antipathetic games players’ utilities fall in that of others, resembling,

e.g., unconditional antagonism and hostility. In two-player antipathetic games, the emo-

tional contagion process causes realized utilities to be negatively related. Unlike sympathetic

games, social inefficiencies here stem from the suboptimal choice of players’ strategies. In

an example, we see that matching two players that dislike each other can be supported in

equilibrium provided that their emotions are neutralized so that no one can benefit from the

dissatisfaction of another, which seems to be in line with anecdotal evidence.

We organize the rest of the paper as follows. We set up the model and provide examples in

§2, and analyze general empathetic games in §3. Next, we characterize equilibrium outcomes

in §4, and study sympathetic and antipathetic games in §5. Section §6 surveys the literature,

and §7 concludes. Omitted proofs and supplemental material are provided in the Appendix.

2 Games with Affective Empathy

In what follows, for given sets X and Y , recall that Y X is the set of all functions f : X → Y .

Also, for any non-empty set X, the set ∆(X) denotes the set of probability measures on X.

2.1 An Empathetic Game and Equilibrium Concept

We consider a finite set of “empathetic” players I. Each player i ∈ I chooses a strategy si

from a finite set Si. Let s = (si)i∈I be a strategy profile, S = ×i∈ISi the set of all strategy

profiles, and S−i = ×j∈I\{i}Sj the set of strategy profiles excluding player i. For any player i,

a mixed strategy is a probability distribution σi ∈ ∆(Si), and a mixed profile is σ = (σi)i∈I ∈
Σ ≡ ×i∈I∆(Si). A mixed strategy of others excluding player i is σ−i ∈ Σ−i ≡ ×i∈I\{i}∆(Si)

and σ−i(s−i) ≡
∏

j 6=i σj(sj). A utility function to player i is a map Ui : S×RI\{i} → R, defined

over strategy profiles s ∈ S and other players’ realized utility profiles u−i ∈ RI\{i}. That is,

each player’s utility function depends not only on the strategy profile being played, but also

on his or her beliefs about the others’ final utilities at that profile. This formulation allows us

to capture the emotional contagion process associated with affective empathy, where players

are affected by the perceived well-being of others. For any profile s, an interdependent utility

system U (s, ·) : RI → RI denotes the map u 7→ (Ui(s, u−i))i∈I . An empathetic game is a

structure Γ ≡ 〈I,S,U〉.
Notice that since players’ primitive utility functions do not depend exclusively on strategy
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profiles, standard solution concepts, such as the Nash equilibrium, cannot be applied here.

To bypass this problem, we endow players with beliefs about others’ final utilities. For any

player i, an empathetic belief is a function ei : S → RI\{i}, where ei(s) is the realized utility

profile that player i believes her co-players would attain if strategy s was played.

How does the actual utility of player i relate to how others’ conjecture i’s utility? We

follow the rational expectations approach and assume that players’ conjectures must be

consistent with the underlying model structure. Specifically, the perceived utility of player i

must coincide with her actual utility, as in, e.g., Bergstrom (1999). It is useful then to define

the set of justifiable utility profiles, or utility set, U(s) ≡ {u ∈ RI : u = U(s, u)}, and say

that a profile of beliefs e = (ei)i∈I is consistent if, for any profile s, there exists a utility

profile u(s) ∈ U(s) such that for every player i ∈ I, ei(s) = u−i(s). In other words, each

player i has correct beliefs about others’ utilities, given others’ beliefs e−i. Thus, if profile s is

being played and beliefs are consistent, then player i’s utility obeys: ui(s) = Ui(s, u−i(s)) for

some u(s) ∈ U(s). Intuitively, in a face-to-face interaction, the emotional contagion process

links the players’ realized utilities, e.g., through their facial expression or body language. As

discussed in §1, psychological evidence indicates that the emotional convergence process is

fast, and thus a utility profile u(s) ∈ U(s) would be reached quickly.11

Before defining our equilibrium notion, call UR
i (σ|e) the reduced-form utility of player i,

given profile σ and empathetic beliefs e, where:

UR
i (σ|e) ≡

∑
s∈S

Ui(s, ei(s))σ(s) (1)

Definition 1. A pair (e∗, σ∗) is an equilibrium if:

i) Beliefs e∗ are consistent;

ii) For each player i ∈ I and profile σi ∈ Σi, we have UR
i (σi, σ

∗
−i|e∗) ≤ UR

i (σ∗|e∗).

As usual, an equilibrium is pure if σ∗ is a degenerate probability distribution. Notice that

realized utilities depend on a solution of the interdependent utility system U , which is based

on realized, and not on expected, strategies. Also, after any profile of strategies is observed,

players have a common equilibrium expectation about which utility profile applies.12

11Belief consistency could be interpreted as a result of a learning or adjustment process. For instance,
for any profile, each player starts with some prior beliefs about the other players’ utilities and derives a
corresponding utility. In the next round, each player observes the realized utilities of others and proceeds
to update his own beliefs, which yields a new utility level, and so on. Our consistency condition would
select a steady state for this learning process. See Bergstrom (1989) for a related discussion. An epistemic
foundation for our equilibrium approach is beyond the scope of this paper and is left for future research.

12This logic is in line with Subgame Perfect Equilibrium. For example, if one reaches a subgame unex-
pectedly, then, subsequently, players are not assumed to conjecture the future play of others independently.
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Condition i) states that in equilibrium each player correctly infers others’ utilities, given

their equilibrium beliefs; and so beliefs cannot be refuted, given the information available

to each player, and are consistent with the logic of a self-confirming equilibrium (Fudenberg

and Levine, 1993). Condition ii) asserts that σ∗ must be a Nash equilibrium with respect to

reduced-form utilities, given consistent empathetic beliefs e∗.

2.2 Two Examples

A. The First-date Game. Anne (a) and Bob (b) simultaneously choose whether to go on

(G) or cancel (C) their first date. If both cancel, their utility is equal to Ui ((C,C) , uj) = 1.

If one of the players goes, the “stood up” party, say i, gets utility Ui ((C,G) , uj) = −1, which

can be interpreted as an ego penalty, while the “canceling” player j obtains Uj ((C,G) , uj) =

1. Finally, if both players go the date, their face-to-face interaction results in interdependent

utilities with i’s utility being Ui ((G,G), uj) =
√

2uj. This interdependency captures the idea

that players’ happiness level depends on their perceptions of how happy their partners are

and vice-versa. In other words, utilities are interdependent when players choose G and are

independent otherwise (as in these cases there is no face-to-face interaction). We summarize

this game below:

G C
G

√
2ub,
√

2ua −1, 1
C 1,−1 1, 1

What does belief consistency mean in this context? When Anne and Bob choose G, they

form respective beliefs ub and ua about the other’s final utility. If these beliefs are consistent,

they satisfy ua =
√

2ub and ub =
√

2ua. Thus, in principle, strategy profile (G,G) is

consistent with two starkly distinct outcomes. In one outcome, both players may end up with

low utility (0, 0) while in the other they may get (2, 2), namely, U(G,G) = {(0, 0), (2, 2)}.
As mentioned in §1, the emotional contagion process causes players’ utilities to be positively

or negatively reinforced. In particular, Anne derives high utility from the date whenever

Bob derives high utility from it (and vice-versa). This added multiplicity is important to

assess unilateral deviations. If Anne chose G, then Bob’s comparison of G and C would

be ambiguous, as his utility necessarily depends on how optimistic both players are. In

fact, going on a date, i.e., strategy (G,G), with empathetic beliefs e∗i (G,G) = 2 for every

player i is a pure equilibrium. However, going on a date with pessimistic self-fulfilling beliefs

e∗i (G,G)=0 is not an equilibrium, because in this case cancelling C is a profitable unilateral

deviation. Thus, Definition 1 tells us exactly which strategy profile and pair of consistent

beliefs we shall expect from equilibrium play. Finally, notice that (C,C) is an equilibrium
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for any beliefs e∗, whereas σ∗a = σ∗b = (2/3, 1/3), where 2/3 is the chance of playing G, with

e∗i (G,G) = 2 for i ∈ {a, b} is the unique, full-support, mixed equilibrium — for beliefs are

consistent, and (σa, σb) is a mixed Nash equilibrium given empathetic beliefs.

Altogether, the multiplicity of consistent beliefs in the previous example shows us that

positive attitudes are necessary if one wants two sympathizing people to match. From a

social viewpoint, matching may be desirable, because agents could engage in productive

behavior, exploiting potential complementarities in their skills. Nevertheless, agents may be

reluctant to match, as they recognize that compassion for another can lead them to misery.

This fear or “social anxiety” may push agents to stay isolated,13 which is an undesirable

equilibrium configuration from a social perspective. Thus, positive mindsets or optimistic

beliefs may drive agents not only to be more productive, but also happier.

B. A Gift-giving Game. Consider a gift-giving game in which player 1 decides whether

to make a monetary transfer to player 2. For simplicity, assume S1 = {0, 1}, namely, player 1

can either transfer one unit (s1 = 1) or nothing (s1 = 0). Transferring one unit costs player 1

a delivery fee φ ∈ (0, 1). Player 2 is passive in that his payoffs depend on player 1’s strategy.

First consider a standard game in which players are incentivized to share wealth through

a warm-glow effect (Andreoni, 1989). Specifically, player 1 derives no utility from his own

consumption, whereas player 2 cares about his and player 1’s final income. We capture

this setting with utility functions U1(s1, s2, u2) = αs1 and U2(s1, s2, u1) = (α − φ)s1, where

α ∈ (0, 1) controls the marginal utility of money to player 2.

In the unique equilibrium, player 1 chooses a full transfer s∗1 = 1 and obtains u∗1 = α,

whereas player 2 gets u∗2 = α − φ. This result holds regardless of how much player 2 values

player’s one transfer. Indeed, when the transfer fee is high enough φ > α, player 2 ends up

unhappy with negative utility. Although from player 1’s perspective she is being altruistic in

making the transfer, she does not internalize how her action impacts player 2’s final utility.

Let us now introduce affective empathy into this game. For this end, suppose that

player 1 cares also about player 2’s welfare such that his utility function is U1(s1, s2, u2) =

αs1 + βu2 with β ∈ (0, 1). In this scenario, there is a unique pair of consistent beliefs

e∗1(s1, s2) = (α − φ)s1 and e∗2(s1, s2) = αs1 + β(α − φ)s1. This empathetic game also has

a unique equilibrium. Player 1 chooses a full transfer s∗1 = 1 if and only if the fee is low

enough φ < α(1 + β)/β ≡ φ̄. While player 1 does not care directly about the fee, she

cares about player 2’s welfare which in turn depends on the fee φ. Indeed, we see that a full

transfer s1 = 1 makes both players worse off, provided the fee is high enough φ > φ̄. Player 1

now internalizes how her behavior impacts the final utility of player 2, and, therefore, her

13Interestingly, one of the most common anxieties for some people involves relationships with peers to
whom they are attracted; see https://en.wikipedia.org/wiki/Social_anxiety.
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final utility. This simple example shows how interdependent utilities can impact economic

behavior in transfer games with empathetic players.14 We provide more discussion about

interdependent utilities and reduced-form preferences in the literature review in §6.

3 Existence, Generic Finiteness, and Other Results

Unlike in games with independent payoffs, here a strategy profile σ ∈ Σ does not provide

a complete description of what utilities players might expect in an empathetic game. The

reason is that one strategy profile might be associated with more than one solution. In

Example 2.2, if Anne and Bob choose σi(G) = 1/2, then each player might obtain 1/4, or

3/4, depending on whether payoffs are either low or high at s = (G,G). This ambiguity

vanishes once we attach a realized utility to each strategy profile. A feasible outcome of

a game is a tuple o ≡ (σ, v) ∈ Σ × RI , where v = (vi)i∈I is a utility profile with vi ≡∑
s∈S
∏

j σj(sj)ui(s) and u(s) ∈ U(s) for every profile s. For any game Γ, call O the set

of feasible outcomes, and O∗ the set of equilibrium outcomes. Because every equilibrium

(e∗, σ∗) induces a unique outcome o∗ ∈ O∗ , WLOG we focus on equilibrium predictions

regarding strategies and realized utilities.

In general, a finite empathetic game may not have a mixed empathetic equilibrium when

utility functions are unbounded. For example, consider a two-player empathetic game, where

for some strategy profile s ∈ S utilities are Ui (s, u−i) = u−i + 1 for i = 1, 2. The emotional

contagion causes an emotional “explosion,” yielding an empty utility set U(s) = {∅}. It

follows then that there does not exist a consistent profile of beliefs that could potentially

support an equilibrium. Also, similar to standard finite normal-form games, empathetic

games can have an infinite number of equilibria. Here, indeterminacy may occur for other

reasons. For instance, take a two-player empathetic game with payoffs Ui (s, u−i) = u−i and

for i = 1, 2 and s ∈ S. Thus, for every profile s, the utility correspondence coincides with

the 45◦ degree line, namely, U(s) = {u ∈ R2|u1 = u2}. Consistency of beliefs implies that

ei(s) = ej(s) for i = 1, 2 and so in equilibrium, anything goes. To avoid these uninteresting

cases, we henceforth make the following assumption on the utility system, U = (Ui)i∈I , unless

explicitly stated.

Assumption 1. For all i ∈ I, Ui(s, ·) is continuously differentiable and bounded for all s.

We use the following definition of genericity. Fix an empathetic game Γ and consider a

family of “perturbed” empathetic games {Γp : p ∈ P}, where P is a subset of RI×S . For

any p ∈ P , the game Γp is constructed by perturbing the utility system U in Γ, so that

14Bourlès et al. (2017) provide an analysis of how transfers are shaped by altruistic social networks.
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Up
i (s, u−i) ≡ Ui(s, u−i) + pi,s for all i ∈ I and s ∈ S. A property is generic, if for any

empathetic game Γ and any open set of perturbations P , there exists a subset of P̄ ⊂ P
with full Lebesque measure such that the property holds in the game Γp for all p ∈ P̄ .

Next, we show that under Assumption 1, our equilibrium notion is well-defined.

Proposition 1. The equilibrium set O∗ is non-empty and generically finite.

In our equilibrium notion (Definition 1), players understand how their utilities depend on

one another and, further, they anticipate correctly the utilities of others when a given strategy

profile is played. However, for off equilibrium conjectures, one may wonder what happens

if players hold beliefs that are individually justifiable but not jointly consistent. That is,

what happens if players misperceived the realized utility of others when assessing a unilateral

deviation? Intuitively, off equilibrium, since there is no face-to-face interaction, there is no

contagion of emotions, and so rational players may hold beliefs that are not consistent as

long as they are individually justifiable. To address this issue, we now introduce a weaker

belief consistency condition (e.g., no face-to-face interactions off equilibrium) that relies on

common knowledge of the interdependent utility system U .

Fix an equilibrium profile σ∗ ∈ Σ with support supp(σ∗). We say that a profile of beliefs e∗

is weakly consistent if for each s ∈ supp (σ∗) there exists a utility profile u(s) ∈ U(s), such

that ei(s) = u−i(s) for all player i; and for all s /∈ supp(σ∗) beliefs satisfy ei(s) = u−i where

(u−i, ui) ∈ U(s) for some ui, for all player i. When beliefs are weakly consistent, players

may disagree about the others’ welfare outside of equilibrium, since their joint beliefs might

not solve the interdependent utility system U , although individual beliefs are justifiable.

Adjusting Definition 1 so that beliefs are weakly consistent yields a weak equilibrium with

an associated outcome set O∗∗.
Proposition 2 clarifies to what extent the modified consistency condition affects the pre-

dictive power of the empathetic framework. The next result does not require Assumption 1.

Proposition 2 (Outcome Equivalence). The equilibrium sets are equivalent O∗ = O∗∗.

Consistent beliefs are weakly consistent, and thus O∗ ⊂ O∗∗. The other direction is more

involved, as seen in Appendix A.1. The takeaway point is that weakening the consistency

condition has no impact in terms of equilibrium outcomes, which may be surprising. This

result not only extends our theory to less restrictive settings, but also provides a cornerstone

of the characterization of equilibrium outcomes in section §4.

We close this section by making an observation regarding the computation of equilibria

in empathetic games. Interestingly, one can find the equilibrium outcome set by following

a simple decomposition of the utility correspondence U. First, take a selection of this
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correspondence, namely, a single-valued function ur : S → RI satisfying ur(s) ∈ U(s) for

all profiles s ∈ S. Next, find the set of Nash equilibria in the reduced-form game 〈I,S, ur〉.
Finally, repeat this procedure for all distinct selections ur. Then, one can, typically, construct

the equilibrium set O∗ in finitely many steps by Proposition 1 — for generically, there is a

finite number of selections ur. In §A.3, we show that the set of equilibria is the union of

equilibria in the reduced-form games (Claim A.1.1).

Remark 1 (On Generic Finiteness of Equilibria). The smoothness requirement in As-

sumption 1 allows us to use differential topology and invoke transversality theorems (Milnor,

1997). For a standard normal form game, Wilson (1971) shows that, generically, there can

be at most a finite number of equilibria. Wilson’s inductive argument — an extension of

the Lemke and Howson algorithm (Lemke and Howson, 1964) — requires that each player’s

payoff at any strategy profile can be independently perturbed. In empathetic games, per-

turbations are over the utility system, rather than the reduced-form utilities (i.e., elements

of the utility set U), and so Wilson’s construction is not applicable. Our proof uses an

alternative argument that relies on a transversality result. Likewise, we cannot use a version

of Sard’s theorem for generalized equations (Theorem 4.1 in Reinoza (1983) invoked, e.g.,

by Gül et al. (1993)) to argue generic regularity of mixed equilibria in a normal form game,

because it assumes that the system of equations can be perturbed by exogenous parame-

ters (here p). Here, transversality is shown with respect to perturbations of exogenous and

endogenous variables (p and u), which introduces novel technical challenges. ♦

Remark 2 (On Efficiency of Equilibria). In empathetic games, we can perform norma-

tive analysis if we focus on outcomes instead of strategy profiles. An outcome (s, v) Pareto

dominates (is dominated by) (s′, v′) if v ≥ v′ (v′ ≥ v) with strict inequality for at least one

player. So an outcome is Pareto efficient if it is not dominated by any other outcome. In

general, the set of Pareto efficient outcomes is non-empty (Claim A.1.1).

Inefficiencies may arise in this context not only because players choose socially-suboptimal

strategies, but also because of the emotional reinforcement process that may lead agents to

low welfare levels (see Example A.1.1). In the intergenerational altruism literature, reduced-

form utilities over consumption streams are unique and may be time-inconsistent, generating

alternative sources of inefficiencies (Saez-Marti and Weibull, 2005; Pearce, 2008). ♦

4 Characterization of Equilibrium Outcomes

We now provide a characterization of a set of equilibria. Assume that players are “cautious”

when assessing hypothetical deviations, meaning that whenever their realized utilities can
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take multiple values for a given strategy profile, they expect their worst outcome to prevail.15

More precisely, define the justifiable utility set for player i, given strategy profile s, as

Ui(s)≡{ui : (ui, u−i) ∈ U(s) for some u−i}. Player i’s maxmin utility function vi :
∑
−i →

R is the maxmin utility that player i can achieve when others play σ−i:

vi(σ−i) ≡ sup
s′i∈Si

∑
s−i∈S−i

inf Ui(s
′
i, s−i)σ−i(s−i) (2)

Observe that (2) is player i’s best-response payoff to σ−i, assuming the worst-case scenario

for player i. These are the most favorable beliefs to support σ as an equilibrium profile.

Indeed, letting v (σ) ≡ (vi(σ−i))i∈I we find:

Proposition 3. A tuple (σ∗, v∗) is an equilibrium outcome if and only if (C.1) all players get

at least their maxmin utility, i.e., v∗ ≥ v(σ∗); and (C.2) for all player i, any strategy si played

with positive chance yields utility v∗i when others play σ∗−i, for some weakly consistent beliefs.

First, observe that condition (C.1) holds iff for every player i and strategy si not in the

support of σ∗i , we have v∗i ≥
∑

s−i
inf Ui(si, s−i)σ

∗
−i(s−i). Second, Proposition 3 allows us

to easily identify which profiles cannot be an equilibrium. By condition (C.1), any strategy

profile that induces a utility less than the maxmin utility level for all players cannot be

implemented as an equilibrium. Thus, as a corollary, characterizing pure equilibrium out-

comes is very simple, as condition (C.2) trivially holds. A tuple (s∗, v∗) is a pure equilibrium

outcome if and only if all players get at least their maxmin utility, i.e., v∗ ≥ v(s∗), where

slightly abusing notation, v(s) is the maxmin utility profile when s is played with probabil-

ity 1. Finally, for “totally mixed” strategies, i.e., sup(σ∗) = S, condition (C.1) immediately

obtains, and thus only condition (C.2) needs to be checked.

5 Games with Pre-existing Relationships

Pre-existing relationships among individuals can affect how individuals empathize, i.e., how

they perceive and experience the emotions of others both positively and negatively. Empa-

thy can manifest as either sympathy or antipathy. Indeed, according to De Waal (2008):

“In human studies, subjects tend to sympathize with a confederate’s pleasure or distress

when they perceive the relationship as cooperative, and yet show an antipathetic response

(distress at seeing others’ pleasure, or pleasure at seeing others’ distress) if they perceive the

relationship as competitive” (p. 291).

15These beliefs are weakly consistent; thus, we can use them to characterize equilibria using Proposition 2.
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5.1 Sympathetic Games

Social psychology demonstrates that sympathy is often observed in cooperative settings,

where the interests of the involved parties are aligned, such as in workplaces (Zillman and

Cantor, 1977; Lanzetta and Englis, 1989; De Waal, 2008).16 Also, from an evolutionary

viewpoint, sympathetic attitudes naturally arise among subjects with similarity, familiarity,

social closeness, and common experiences (Batson, 2011). These aspects trigger emotional

contagion, where agents feel what others feel without expecting anything in return. Notice

that this phenomenon is in contrast to reciprocity theory, where agents want to get even

with other agents. In reciprocity theory, agents view other agents favorably and unfavorably,

depending on the specific conditions present.

In this section, we consider players whose realized utilities are positively related, i.e., they

are sympathetic toward each other. A sympathetic game is an empathetic game in which for

every player i ∈ I, the utility function Ui(s, ·) is increasing for all profiles s ∈ S and strictly

increasing for some s ∈ S.17

Exploiting the extra structure of sympathetic games, we show in §A.3 that the set U(s)

is a complete lattice for all profiles s, and thus U(s) has a minimal and maximal element.

Moreover, in games with two players, the utility set U(s) is totally ordered (Claim A.3.1).

These results formally capture the idea that, due to emotional contagion among players,

similar behavior can lead to either joint excitement or shared frustration. This insight

appears particularly relevant for managerial practices, because it illustrates a psychological

force that may be important in analyzing how to keep workers’ morale high (Bewley, 1999).

In Example 2.2, notice that vi(σj) = 1 for all i, j, and so (C,G) and (G,C) cannot

be equilibrium profiles, by Proposition 3. However, (C,C) and (G,G) can be supported

as equilibrium outcomes, provided beliefs e∗i (C,C) = 2 for all player i. In particular, the

totally mixed strategy σi(G) = 2/3 is an equilibrium, since strategies C and G yield the

same utility for all i, j (condition C.2).18 This example suggests that, although agents derive

pleasure from others’ pleasure, and thus collaborating (or going to the date) is efficient, an

“environment” that triggers positive self-reinforcing beliefs among the agents also appears

16Preston and De Waal (2002) survey the literature on intensity of empathy in humans (animals).
17Consider the component-wise order, so that for any pair of vectors u, u′ ∈ RI , u ≥ u′ iff ui ≥ u′i for all

i ∈ I and u > u′ if for some i inequality is strict. We say that Ui(s, ·) is increasing at s if u−i ≥ u′−i implies
Ui(s, u−i) ≥ Ui(s, u

′
−i) and strictly increasing if for u−i > u′−i one has Ui(s, u−i) > Ui(s, u

′
−i). Analogous

definitions hold for decreasing and strictly decreasing functions.
18Notice that, in sympathetic games, when utility functions are symmetric at a given strategy profile s,

the utility set U(s) takes a particularly simple form, namely, a utility profile u ∈ U(s) iff ui = uj for all
players i, j. This means that the utility set U(s) can be determined as the solutions of a single equation
ui = Ui(s, ui, ..., ui). To see this, suppose that an element of U(s) is not symmetric. Then, there must exist
a player i such that ui ≤ ui′ for all i′ with strict inequality for some j. Since u−i and u−j differ only in one
element that is higher in u−i than u−j , we have ui =Ui(s, u−i)≥Ui(s, u−j)=uj , which is a contradiction.
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Figure 1: Understanding the utility set U. Left: When utility functions exhibit diminishing
sympathy, the utility function for player 2 is increasing and concave, and thus its inverse is increas-
ing, but convex. Thus, in the (u1, u2)-space, the utility of player 1 is increasing and concave, while
the inverse payoff for player 2 is increasing and convex. These functions intersect twice. Middle: A
unique fixed point is non-generic, provided Inada. Right: With rising marginal antipathy, player
1’s utility function is decreasing and concave and so is the inverse of player 2’s utility function;
thus, these functions can intersect more than twice.

to be necessary to ensure an efficient outcome.

We next discuss the marginal effects of sympathy. One can imagine that people are

more sympathetic toward those who are less fortunate. For instance, a person who is sick

may elicit more sympathy (per utile) than a person who is healthy. This demands that

the marginal increase in sympathy lessens as the welfare of others rises. Also, sympathetic

individuals may exhibit extreme compassion at the margin for those who are in peril, but

have no compassion for the auspicious ones. We say that a utility system U = (Ui)i∈I exhibits

diminishing (rising) marginal sympathy at s if Ui(s, ·) is strictly concave (convex) for any

player i; and it satisfies the Inada conditions if system U is continuously differentiable and

limuj↓−∞ ∂Ui(s, uj)/∂uj = −∞ and limuj↑∞ ∂Ui(s, uj)/∂uj = 0, for every player i. Since any

strictly concave function Ui : R→ R is necessarily unbounded, we now relax Assumption 1.

Diminishing sympathy and Inada are natural behavioral assumptions for preferences

that are consistent with usual economic logic. Yet a unique solution to a payoff system,

often assumed in the literature, is non-generic.19 As seen in Example 2.2 and Figure 1, in

two-player sympathetic games, the utility set U(s) has, at most, two elements, provided that

players exhibit monotonic marginal sympathy. This holds generically when the utility system

satisfies the Inada conditions (Claims A.3.2–A.3.3).

19The Inada assumption is critical. Suppose that Ui(s, ui) = ui − exp(−uj) for i = 1, 2, so Ui is strictly
increasing concave, and limuj↑∞ ∂Ui(s, uj)/∂uj =1. For small perturbations, there is a unique fixed point.
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5.2 Antipathetic Games

Antipathy is the opposite of sympathy — a feeling of dislike for someone. Lanzetta and

Englis (1989) and Zillman and Cantor (1977) show that antipathy often arises in competitive

environments, where one party’s gains result in losses for the other party. As Bertrand

Russell once wrote, “I care for very few people and have several enemies—two or three at

least whose pain is delightful to me” (Russell, 2000, p. 73). In these environments, the

emotional contagion process induces realized utilities to be negatively related. Following

§5.1, an antipathetic game is an empathetic game in which for every player i ∈ I, the utility

function Ui(s, ·) is decreasing for all profiles s ∈ S and strictly decreasing for some s ∈ S
Unlike in sympathetic games, the utility set U(s) does not have an ordered structure

with more than two players unless strong parametric assumptions for U are present, such

as symmetric linearity. The reason for this result is captured by the ancient proverb: “The

enemy of my enemy is my friend.” This highlights that, in antipathetic games, emotions

are not transitive, which adds another layer of complexity. More precisely, consider an

antipathetic game with three players i = 1, 2, 3. An exogenous increase in the payoff of player

1 has a direct adverse effect on player 3’s payoff. It also reduces player 2’s payoff, which

indirectly improves player 3’s payoff. If antipathy between players 1, 2 and 2, 3 is strong,

while the same between players 1 and 3 is only mild, then the indirect effect on player 3’s

payoff may dominate. This result does not arise in sympathetic games, because positive

emotions are transitive, or “The friend of my friend is my friend.” Henceforth, we focus on

the direct effects of antipathy, restricting our attention to two-player antipathetic games.

In general, in two-player antipathetic games, for any strategy profile, there exists a utility

profile that is the best for one player and the worst for the other. In fact, this is a general

property of two-player antipathetic games (Claim A.3.4).20 Also, unlike sympathy, antipa-

thetic games with concave utility functions (rising antipathy) do not limit the number of

elements of the utility system — as seen in the right panel of Figure 1.

Suppose Alice and Bob dislike each other, so that if they both choose G, then each player

gets Ui(s, uj) =
√

4− 2uj if uj ≤ 2 and Ui(s, uj) = 0 otherwise. Payoffs to other profiles

are as in Example 2.2. Observe that U(G,G) = {(0, 2), (1.23, 1.23), (2, 0)}.21 So aside from

the asymmetric solutions, in which one player enjoys the misfortune of the other, there is an

instance in which both Anne and Bob receive the same payoff.22 Here, the maxmin utilities

20In two-player antipathetic games, every utility profile in U(s) is “payoff efficient” in the sense that there
is no other utility profile in U(s) that Pareto dominates (Remark 2) the other in terms of welfare. As a result,
inefficiencies stem exclusively from the suboptimal choice of players’ strategies. By contrast, in sympathetic
games this is usually not the case, as utility profiles are positively related and ordered (Claim A.3.1).

21Unlike sympathy §5.1, here the elements of U(s) are not symmetric even if utility functions (Ui)i are.
22This is a general feature of empathetic games with symmetric utility functions (Observation A.3.1).
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for pure strategies obey vi(G) = vi(C) = 1. Thus, (G,C) and (C,G) cannot be supported as

equilibria, by Proposition 3. Yet, (G,G) can be supported as equilibrium only for beliefs that

coordinate on ui(G,G) = 1.23. Profile (C,C) can always be supported as an equilibrium,

using the reasons previously discussed. Finally, notice that vi(σj) = 1 for any σj, and so

the only equilibrium in mixed strategy is symmetric and entails σi(G) = 0.9 and beliefs that

coordinate on ui(G,G) = 1.23. Altogether, this example suggests that the only stable way

to put together two people that dislike each other is by neutralizing their emotions such that

no one can benefit from the dissatisfaction of the other, provided their outside options are

neither too high nor too low.

6 Literature Review

A. Non-paternalistic Preferences. Our paper closely relates to the literature on

non-paternalistic preferences, wherein agents are affected not only by outcomes, but also

by the ultimate well-being of others. This framework has been used to model altruism, or

non-paternalistic sympathy, in the economics of the family (Becker, 1974; Bernheim, 1989;

Bergstrom, 1999); see Bergstrom (1997) for a survey. For example, in an intertemporal

allocation context with multiple generations, each generation may care about its own con-

sumption and the well-being of other generations (Koopmans, 1960; Ray, 1987; Saez-Marti

and Weibull, 2005; Pearce, 2008; Galperti and Strulovici, 2017). Non-paternalistic pref-

erences have been also used in other contexts, including national savings (Ramsey, 1928;

Phelps and Pollak, 1968), public finance (Barro, 1974), economic growth (Bernheim, 1989),

environmental economics (Dasgupta, 2008), and social networks (Bourlès et al., 2017). Yet,

we may have been the first to realize that this modeling of interdependent preferences seems

to capture the psychological phenomena of affective empathy and emotional contagion.

While this framework is amenable to study how emotions propagate among players in

social settings, non-paternalistic preferences have been studied only in special cases. For

instance, some papers assume that altruism is one-sided, meaning that a player cares about

another but not vice-versa; see, e.g., Becker (1974). As we show, this assumption rules out

important feedback effects that determine emotion transmission. Other papers have indeed

allowed for feedback effects among players; see, e.g., Pearce (2008); Bergstrom (1989); Bern-

heim and Stark (1988); Lindbeck and Weibull (1988); Fels and Zeckhauser (2008) and Courty

and Engineer (2017). Nonetheless, utility functions are assumed to have a linear structure

or to satisfy a contraction condition,23 which forces unique reduced-form preferences over

23For instance, Pearce (2008) invoked Hawkins-Simon conditions on the system of marginal utilities to
ensure existence and uniqueness of a reduced-form utility profile with intuitive comparative statics properties.
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outcomes and washes away novel sources of multiplicity. Thus, one can perform equilib-

rium analysis by applying standard solution concepts to the reduced-form game, because

the utility correspondence U(s) is forced to be single-valued for all s. In more general set-

tings, little is known about what happens if feedback effects, captured by the interdependent

utility system U , do not induce unique reduced-form preferences over outcomes. Further,

little is known about how to systematically embed non-paternalistic preferences in strategic

settings or how to perform equilibrium analysis. In this paper, we show that many technical

and conceptual challenges emerge if one considers non-linear utility systems. We show how

arbitrary payoff interdependencies shape social interactions in simultaneous move games.24

B. Outcome-based/Paternalistic Preferences. Our paper relates to the litera-

ture on material games, which are commonly used to model interdependent preferences; see

Sobel (2005) for a survey. This approach exploits the standard game-theoretic formulation,

wherein utilities are a function of outcomes. In material games, an outcome is a distribution

of material payments, such as consumption or money, across players. More specifically, for a

fixed game, an allocation rule assigns material payoffs x(s)≡(xi(s))i when profile s is played.

Preferences are then represented by a compound utility function Vi(x(·)). Player i is deemed

as paternalistically altruistic towards player j if his utility rises in the material payoff of j

(i.e., xj). This approach is flexible in that preferences can be easily tweaked to rationalize

experimental data that is otherwise inconsistent using models that assume that agents are

purely selfish (i.e., Vi(x(·)) ≡ Vi(xi(·))). Versions of this specification have been used pre-

viously, e.g., in Levine (1998); Fehr and Schmidt (1999); Bolton and Ockenfels (2000) and

Grohn et al. (2014).

However, because of the reduced-form nature of this approach, it is unclear why and how

these utilities depend on the distribution of material payoffs, or what determines the specific

shape of these utility functions. If we interpret the functions Vi(x(·)) as primitive utility

functions, then we may encounter paradoxes. As we show in §2.2-B, in certain settings a

player that is paternalistically altruistic towards another player may take actions that could

indeed hurt this player, because players do not internalize how their behaviors impact the

final welfare of others. Alternatively, we could interpret Vi(x(·)) as a realized utility function

coming from a primitive interdependent utility system U .

Indeed, suppose players care about both their own material outcome and the welfare

By contrast, we show existence of an equilibrium without appealing to any stability condition (except for
bounded range spaces), and we prove generic finiteness in addition; see Proposition 1.

24A systematic analysis of dynamic empathetic games is material for future research. Pearce (2008)
considers strategic interactions among a finite number of altruistic generations who sequentially choose how
to allocate consumption over time. He argues that, in a dynamic intergenerational problem in which early
generations receive payoffs before successors move, a subgame perfect equilibrium with respect to reduced-
form payoffs is not an adequate solution concept. In simultaneous move games, this issue is not a problem.
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of others so that Ui (xi, uj) = xi + b
∑

j 6=i uj. This utility system admits a paternalistic

representation (Vi(x))i when b 6=1/(I − 1) and b 6=−1, which is given by:

Vi(x) =
1 + 2b− bI

(1 + b)(1 + b− bI)
xi +

b

(1 + b)(1 + b− bI)

∑
j 6=i

xj. (3)

Notice that, since players are affected by both their own material gain and the total welfare

of others, we can think of players as if they cared about a linear combination of their own

material gains and those of others.25 Also, observe that the coefficients of Vi summarize those

of the primitive utility system Ui in an interesting way. For sympathetic games (i.e. b>0), the

weight placed on others’ material payoffs in (3) is positive iff sympathy among the players is

not too strong, or b < 1/(I− 1).26 That is, reduced-form payoffs may fall in others’ material

payoffs when agents are too sympathetic, b > 1/(I−1).27,28 In general, the non-paternalistic

framework clarifies when (reduced-form) preferences that increase in the others’ material

outcomes are indeed capturing a genuine concern for the others’ final welfare.

C. Intention-based Preferences. Finally, our paper also relates to the literature on

reciprocity (Rabin, 1993), wherein players want to be kind and unkind to whoever is kind and

unkind to them, respectively. This literature uses psychological game theory (Geanakoplos

et al., 1989; Dufwenberg, 2008) to model intention-based preferences. In psychological games,

utility functions not only depend on outcomes but also on higher-order beliefs, which are

beliefs about beliefs about beliefs. . . about choices. For example, in Rabin (1993), player’s

i utility function is Vi(x(s)|ŝ) ≡ vi(xi(s)) + αi(ŝ)vj(xj(s)), where vi, vj are material utilities

that depend on the allocation rule x(s), α(ŝ) measures how much player i cares for j, and

ŝ = (ŝi, sj) denotes player i beliefs about what player j believes about him.29 The equilibrium

concept discussed in Geanakoplos et al. states that, given high order beliefs, players must

play a best response, and, given those responses, high order beliefs must be justified by their

play. In the previous example, this means that if s is an equilibrium profile, then it must

be a mutual best response, given ŝ, and s = ŝ. By putting more structure on α(·) one can

model situations in which players, say, reciprocate kindness with kindness and meanness

25Bramoullé (2001) and Bourlès et al. (2017) study how primitive relationships between agents’ utilities
impact reduced-form relationships in linear and separable environments.

26For altruistic interdependent utility systems, Pearce (2008), Bergstrom (1999), and Bramoullé (2001)
provide sufficient conditions so that paternalistic payoffs Vi(x) are well defined and increasing in others’
material payoffs. In particular, conditions (A1)–(A3) in Pearce (2008) are equivalent here to b ∈ (0, 1/(I−1)).

27The opposite holds for antipathetic games.
28See Bernheim (1989) and Bernheim and Stark (1988) for further discussion of how excessive sympathy

can lead to paradoxical results.
29Segal and Sobel (2007) provide conditions under which a player’s preferences over strategies s can be

represented as a weighted average of the utility from outcomes of the individual and his opponents. The
weight one player places on an opponent’s utility from outcomes depends on the players’ joint behavior ŝ.
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with meanness; see also Charness and Rabin (2002) and Falk and Fischbacher (2006).30

In intention-based models, agents have a strategic reason to reciprocate behavior. This

assumption may be better suited for environments in which players are anonymous, and

thus affective empathy is less important. However, in other settings, players may know each

other in such a way that their emotions are interlinked (e.g., family and relatives, friends,

or enemies), or interactions may be face-to-face. In these settings, affective empathy and

emotional contagion are, indeed, relevant, as the psychological evidence shows; see §1.

Finally, at a more technical level, in our paper utility functions depend on both outcomes

and the realized utilities of others. Because players act independently, reduced-form utili-

ties over outcomes are endogenously-determined through beliefs about the others’ realized

utilities. Like Geanakoplos et al. (1989), we also follow an equilibrium approach and use a

consistency condition. However, in our setting players internalize how their deviations would

impact the utility of others and thereby their own utility. Thus, our notion of consistency

applies to all strategy profiles and not just equilibrium ones.31

7 Concluding Remarks

Empathy shapes many, if not most, social interactions. In this paper, we propose a framework

that captures a type of empathy that has been extensively documented in social psychology

but unexplored in the economics literature. We focus on the role of affective empathy and

the related emotional contagion process among players. In our framework, players care

not only about a chosen strategy profile, but also about others’ realized utilities; thus, our

theory crucially distinguishes between primitive-utility and realized-utility functions. To

capture emotional feedback effects, we allow realized utilities to be interdependent. This

assumption raises conceptual and technical obstacles. Because feedback effects may lead to

multiple realized utilities, one can think of these games as if players’ preferences are described

by correspondences instead of utility functions. We provide a parsimonious and tractable

solution concept and characterize the corresponding set of equilibrium outcomes. We also

provide examples that illustrate the scope of the theory.

Our framework is not only tractable, but also useful in explaining psychological and

behavioral phenomena. We are currently exploring the role of affective empathy in principal-

30Levine (1998) and Gul and Pesendorfer (2016) provide an alternative (epistemic) approach to model
intentions using behavioral types which encode observable characteristics and personality traits. Winter
et al. (2016) develops a theory of strategic emotions in which players simultaneously choose strategies and
mental states to best respond one another, while mental states determine preferences over outcomes.

31It is immediate to adapt our solution concept to settings with “limited empathy,” in which players expect
an equilibrium utility profile u∗ and best respond to one another taking u∗ as given. In this case, beliefs
need to be consistent only for equilibrium profiles, like in Geanakoplos et al. (1989).
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agent settings. In particular, in Vásquez and Weretka (2016), we consider a labor market

in which a manager chooses both a team of workers and their compensation. The main

innovation is to introduce mutual empathy among workers in the workplace. We explore

how firms respond to labor productivity shocks and show that the model rationalizes the

empirical findings of Bewley (1999),32 which have been hard to reconcile with alternative

formulations of pro-social preferences. This indicates that our paper may provide a natural

stepping stone towards a more general understanding of the role of morale in economics.

In this paper, we consider the simplest case of simultaneous move games. This allows us to

study strategic interactions with pre-existing relationships (e.g., sympathy or antipathy). An

important direction for future research is to allow agents’ relationships to evolve depending

on how the game transpires. For this goal, a natural first step is to extend the framework

to encompass dynamic considerations, and then focus on how pro-active behaviors shape

mutual attitudes. Also, allowing dynamics seems important for experimental work, because

most of the designs in this field have a sequential-move protocol.

Finally, in our current setting, we isolate a psychological force and let emotions trans-

mit unconsciously or subconsciously among players. It would be interesting to merge our

approach with psychological games to also capture strategic emotion transmission. For ex-

ample, players can be either sympathetic or antipathetic, depending on how certain behavior

is perceived.33 Allowing utility functions to depend not only on others’ realized utilities, but

also on hierarchies of beliefs regarding behavior, would provide a natural language to study

strategic and unconscious emotion contagion and its behavioral implications. Other techni-

cal issues that remain open include exploring other contending solution concepts (e.g., those

based on learning or rationality), and axiomatic foundations for interdependent utilities.34
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Bourlès, R., Y. Bramoullé, and E. Perez-Richet (2017): “Altruism in networks,”

Econometrica, 85, 675–689.
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A Omitted Proofs

A.1 Proofs of Section §3

Proof of Proposition 1 : First we demonstrate existence of equilibrium. Fix a profile s ∈ S.

Since the interdependent utility system U(s, ·) is bounded, there exists a closed box35 B ⊂ RI ,

such that U(s,RI) ⊂ B. Notice that U (s, ·) restricted to B maps into itself; the set B is

convex and compact, and the map is continuous, by Assumption 1. Thus, by Brouwer Fixed

Point Theorem, there exists u ∈ B with U(s, u) = u. This holds for any s ∈ S, and so the

utility profile set is non-empty, U(s) 6= ∅, for any s ∈ S.

Fix an empathetic game Γ = 〈I,S,U〉 with U satisfying Assumption 1. Let ur : S → RI

be a selection of U(·), namely, a function satisfying ur(s) ∈ U(s) for all s. By non-emptiness

of U(·), at least one such selection exists. Next, consider a standard normal form game

Γr ≡ 〈I,S, ur〉. By Nash (1950), the game Γr has a mixed strategy equilibrium σ∗. Next,

define e∗i (s) = ur−i(s) for all s and i. Since ur(s) ∈ U(s), we have that uri (s) = Ui(s, u
r
−i(s)) =

Ui(s, e
∗
i (s)), and so for any (i, σi), i’s reduced form payoff obeys:

UR
i (σ|e∗i ) =

∑
s∈S

∏
j∈I

σ∗j (sj)u
r
i (s) ≥

∑
s∈S

σi(si)
∏
j 6=i

σ∗j (sj)u
r
i (s) = UR

i (σi, σ
∗
−i|e∗i )

where the inequality holds, for σ∗ is a Nash equilibrium in Γr. Finally, Definition 1-i) holds,

for e∗ is jointly consistent for all s ∈ S by construction. Definition 1-ii) holds as σ∗ is a Nash

equilibrium in Γr. Thus, (σ∗, e∗) is an empathetic equilibrium of Γ. Using equation (1), and

letting v∗i ≡ UR
i (σ∗|e∗i ) for all i, we see that (σ∗, v∗) ∈ O∗.

Next we demonstrate generic finiteness of equilibria. We develop a series of lemmas,

which we then use to prove the main result.

Lemma 1. For any open set P, there exists a subset of perturbations P0 with full Lebesgue

measure such that, in any game Γp with p ∈ P0, the utility set U(s) is finite for all s ∈ S.

35A closed box B ⊂ RI is a set B ≡ {b ∈ RI : b̄ ≥ b ≥ b} for some b̄, b ∈ RI with b̄i > bi for all i = 1, . . . , I.
Unlike a closed ball, a closed box has an orderedvstructure that we later exploit in §5.
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Proof: Consider a function g : RI×|S| × P → RI×|S|
, where given u = (us)s∈S , us ∈ RI ;

and p = (ps)s∈S , ps ∈ RI , one has

g(u, p) ≡ (U(s, us)− us + ps)s∈S (4)

The collection of all roots of function g(·, p) uniquely defines U(·) in a perturbed empathetic

game. We will show that g(·, p) has a finite number of roots for almost every perturbation

p. First, since g is additive separable in p with each parameter pi,s perturbing one equation

and U is continuously differentiable, function g(·) is smooth and so transverse to zero (i.e.,

g t 0). Second, by the Transversality Theorem, there exists a set P0 ⊂ P with full Lebesque

measure such that g(·, p) t 0 for all p ∈ P0. Thus, for each root u ∈ g−1(0, p), the Jacobian

of g has full rank. Third, by the Inverse Function Theorem, there exists a neighborhood

around each root u, such that g(·, p) (restricted to this neighborhood) is a bijection. Thus,

there can be at most one solution to g(·, p) = 0; i.e., root u ∈ g−1(0, p) is an isolated point.

Finally, by Assumption 1, for any p ∈ P0, there exists a closed box Bp ⊂ RI×|S| such that

g−1(0, p) ⊂ Bp. Since Bp is compact and g−1(0, p) is a collection of isolated points, g−1(0, p)

is necessarily finite.36 So for almost every perturbation, utility set U(·) is finite. �

Now we exploit the geometry of our problem. Observe that the set of mixed strategy

profiles Σ = ×i∈I∆(Si) is a polyhedral set. Thus, by Theorem 19.1 in Rockafellar (1970), the

set of strategy profiles Σ has finitely many faces, that we index by k = 1, . . . , K and denote

by F k. Next, call F̃ k to the relative interior of F k (i.e., F̃ k ≡ riF ), and let Lk be the affine

hull of F k (i.e., Lk ≡ affF ); namely, the smallest affine subspace containing F k. Finally,

denote by (Lk)⊥ the orthogonal complement of Lk.

By Theorem 18.2 in Rockafellar (1970), the profile set Σ is partitioned by the relative

interior of its faces; that is, Σ =
⋃K
k=1 F̃

k where F̃ k ∩ F̃ k′ = ∅ for all k 6= k′. Thus, for any

profile σ ∈ Σ, there exists a unique face F k such that σ ∈ F̃ k.37 Also, for any F̃ k, there exist

subsets (Ski )i∈I with Ski ⊂ Si such that supp(σ) = ×i∈ISki ≡ Sk for all σ ∈ F̃ k.

Next, fix k ∈ {1, . . . , K}. For any player i ∈ I, define a function vi(si|·) : R|Sk|×Lk → R,

36For if not, one then could find an infinite sequence of distinct solutions belonging to a compact set. This
sequence would have a convergent subsequence, and so by continuity, the limit would be a root of g(·). But
then, for any open neighborhood about this limit, we could find another root in this neighborhood, which
contradicts the fact that roots are isolated.

37For example, a unit simplex Σ in R3 has seven faces: three vertices, three edges and the simplex itself.
The relative interiors of the faces, i.e., vertexes themselves, simplex edges without its boundaries (vertexes)
and the interior of the simplex partition Σ.
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that for each si ∈ Ski , vector ui ∈ R|Sk| and σ−i assigns a real number,

vi(si|ui, σ) =
∑

s−i∈Sk−i

∏
j 6=i

σj(sj)ui(si, s−i),

and vi(si|·) = 0, if si /∈ Ski . For σ ∈ F̃ k this function gives the expected utility of a pure

strategy si ∈ Ski to player i, given others’ playing σ−i and support payoff vector ui ∈ R|Sk|.
For any (u, σ) ∈ RI×|Sk|×Lk, we define vi(u, σ) ≡ (vi(si|u, σ))si∈Si

and v(u, σ) ≡ (vi(u, σ))i∈I .

Given a tuple (e, σ) with σ ∈ F̃ k, we say that a utility vector u (s) ∈ RI×|Sk| generates

beliefs on the support if it solves u (s) ∈ U(s) for all s ∈ Sk and ei(s) = u−i(s) for each i ∈ I.

Lemma 2. Let (e∗, σ∗) with σ∗ ∈ F̃ k. Suppose (e∗, σ∗) is an empathetic equilibrium. Then,

there exists u∗ ∈ RI×|Sk| that generates beliefs e∗ on the support, and v(u∗, σ∗) belongs to (Lk)⊥.

Proof: Suppose v(u∗, σ∗) /∈ (Lk)⊥. Then there exists δ ∈ Lk so that v (u∗, σ∗) · δ 6= 0.

Next, since F̃ k is an open set contained in Lk, there exists α ∈ R such that σ∗ + αδ ∈ F̃ k

and v(u∗, σ∗) ·αδ =
∑

i∈I vi(u
∗, σ∗) ·αδi > 0. So vi(u

∗, σ∗) ·αδi > 0 for some player i. Finally,

σ∗i +αδi ∈ ∆(Ski ), and so player i has a profitable deviation, contradicting Definition 1-ii).�

The affine subspace Lk is an H-dimensional smooth manifold where H ≤
(∑

i∈I |Si|
)
−I.

Let T k = {tkh}Hh=1 be an orthogonal base of Lk. As in Lemma 1, consider an open set of

perturbations P ⊂ RI×|S|. Define a function fk : RI×|Sk| × Lk × P → RI×|Sk| × RH , where:

fk(u, σ, p) ≡

(
(U(s, us)− us + ps)s∈Sk ,

(v(u, σ) · tkh)Hh=1

)

For motivation, consider a set of solutions to fk(u, σ, p) = 0. Observe that the first I ×
∣∣Sk∣∣

equations fix a utility vector u that generates beliefs on the support Sk, whereas the last H

equations are necessary equilibrium conditions (Lemma 2). Altogether, if (u∗, σ∗) is an

empathetic equilibrium in a perturbed game Γp, then (u∗, σ∗) must be a root of fk(·, p).

Lemma 3. Consider Assumption 1. For each face F k, there exists a subset Pk of P with full

Lebesque measure such that for all p ∈ Pk, the set (fk)−1(0, p) contains only isolated points.

Proof: We first show that function fk is transverse to zero (fk t 0). First, each of the

first I×|Sk| components can be independently perturbed by p = (ps)s∈Sk . Second, note that,

for every strategy si ∈ Ski , the expected payoff vi(si|u, σ) =
∑

s−i∈S−i

∏
j 6=i σj(sj)ui(si, s−i)

can be made arbitrarily by choosing ui(si, s−i) accordingly. Third, for every profile s /∈ Sk,
each (basis) vector tkh is multiplied by zero. Thus, adjusting v in the direction of tkh can

independently perturb each of the orthogonality conditions. This change in v would affect
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only the value of the hth condition, leaving all others unchanged. Altogether, the Jacobian

of fk has full rank I ×
∣∣Sk∣∣+H, so fk is transverse to zero (fk t 0).38

Next we argue that each root of fk is isolated. First, by the Transversality Theorem,

there exists Pk ⊂ P with full Lebesque measure such that fk(·, p) t 0 for all p ∈ Pk. Thus,

for any root (u, σ) ∈ (fk)−1(0, p), the Jacobian of fk(·, p) has full rank I×
∣∣Sk∣∣+H. Finally,

by the Inverse Function Theorem, there exists a neighborhood of (u, σ), where fk(·, p) is a

bijection, which contains at most one root. Thus, the root (u, σ) is isolated. �

Lemma 4. Consider Assumption 1. There exists a set P̄ ⊂ P with full Lebesque measure

such that the equilibrium set in the game Γp is finite, for all p ∈ P̄.

Proof: First, for any p ∈ P and U satisfying Assumption 1, one can find a closed box

Bu ⊂ RI×|S| so that for any u = (us)s∈S ∈ Bu, the utility vector us obeys U (s, us) + ps = us.

Second, let BΣ ⊂ R
∑

i|Si| be a closed box containing Σ, and for each face F k, let Bk
Σ ≡ BΣ∩Lk.

Also, consider the set Bu × Bk
Σ. By construction, all profiles (u∗, σ∗) with σ∗ ∈ F̃ k that

can generate equilibria belong to Bu × Bk
Σ ∩

(
fk
)−1

(0, p). Since Bu × Bk
Σ is compact and(

fk
)−1

(0, p) contains only isolated points (Lemma 3), the setBu×Bk
Σ∩
(
fk
)−1

(0, p) is finite.39

Next, by Lemma 3, there exists {Pk}Kk=1 such that (fk)−1(0, p) contains only isolated points

for all p ∈ Pk. Consider p ∈ P̄ ≡
⋂K
k=0Pk (the union includes set P0 defined in Lemma 1).

Since Bu×Bk
Σ∩
(
fk
)−1

(0, p) is finite for each k, it follows that
⋃K
k=1(Bu×Bk

Σ)∩
(
fk
)−1

(0, p)

is finite too. Also, since {F̃ k}Kk=1 is a partition of Σ, we have that for every F̃ k ⊂ Bk
Σ:

Bu × Σ ∩
(
fk
)−1

(0, p) ⊂
K⋃
k=1

(Bu ×Bk
Σ) ∩

(
fk
)−1

(0, p)

Thus, the set Bu×Σ∩
(
fk
)−1

(0, p) is finite. Note that each (u∗, σ∗) ∈ Bu×Σ∩
(
fk
)−1

(0, p)

can generate at most one strategy profile with “support” beliefs. Finally, the set of consistent

beliefs for profiles s not in the support is finite by that fact that, for p ∈ P0, the utility set

U(·) is finite for any strategy (Lemma 1). Altogether, the set of mixed empathetic equilibria

is finite, for all p ∈ P̄ . �

38Given σ, the Jacobian of fk, Dfk, is a block matrix:

Dfk =

 Dpf
k Duf

k

consistency e II×|Sk| Du(U − u)
orthogonality v 0 (Duv)T


where II×|Sk| is an identity matrix, Duv is the Jacobian of v in u, and Du(U −u) is that of U −u. Since Duv

has full rank, and the vectors in T k are orthogonal, the product matrix has full rank h. So Dfk has full rank.
39See the proof of Lemma 1 for a more elaborated argument.
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We can now conclude the proof of Proposition 1. First, the utility set U(·) is finite in any

generic game, by Lemma 1. Second, by Lemma 2–3, the set of equilibria necessarily contains

only isolated points. Next, by Lemma 4, there is a finite number of such points. Finally,

since each equilibrium (e∗, σ∗) generates one outcome o∗, the equilibrium set is generically

finite, because O∗ is generically finite. �

Proof of Proposition 2: First, any empathetic equilibrium is a weak empathetic equilib-

rium, thus O∗ ⊆ O∗∗. Conversely, fix an equilibrium outcome o∗ = (σ∗, v∗) ∈ O∗∗ in-

duced by some weakly consistent empathetic beliefs e∗∗. Next, we construct consistent

beliefs e∗ that also induce equilibrium outcome o∗. For the sake of clarity, now we in-

troduce notation needed only here. For any i ∈ I, the deviation set of player i is Sdi ={
s ∈ S0 : si 6= supp(σ∗i ) and sj ∈ supp(σ∗j ) for all j 6= i

}
. The residual set contains all pro-

files that are neither in a deviation set nor in the support of σ∗, that is, Sr ≡ S\
(⋃

i∈I S
d
i ∪ supp(σ∗)

)
.

Now consider the following beliefs e∗. For all profiles s ∈ supp(σ∗), beliefs are as in the

original equilibrium: e∗i (s) ≡ e∗∗i (s) for all i ∈ I. Next, for any i ∈ I and any pro-

file s ∈ Sdi , beliefs e∗∗ (s) are weakly consistent, and so there must exist a utility profile

u(s) ≡ (ui(s), e
∗∗
i (s)) ∈ U(s). Let e∗i (s) ≡ e∗∗i (s) for player i and e∗j(s) ≡ u−j(s) for all

j 6= i. Next, for any s ∈ Sr, pick any solution u(s) ∈ U(s) and define e∗i (s) ≡ u−i(s) for all

i ∈ I (at least one such profile exists since o∗ is a weak equilibrium outcome). Since the sets

supp(σ∗),Sr and
{
Sdi
}
i∈I form a partition of the strategy space S, beliefs e∗ are defined on

the entire domain S. Also, by construction, beliefs e∗ are consistent at all s ∈ S.

Now we argue that σ∗ is a mutual best response given e∗. Fix a player i. For any

σi ∈ ∆(Si), we have supp(σi, σ
∗
−i) ⊂ supp(σ∗) ∪ Sdi . Since on these sets i’s beliefs are

unchanged, e∗i (s) = e∗∗i (s) we have UR
i (σi, σ

∗
−i|e∗i ) = UR

i (σi, σ
∗
−i|e∗∗i ) by (1). This means that

if σ∗i is a best response to σ∗−i given beliefs e∗∗i , then it is a best response given e∗i . This logic

holds for all players i ∈ I. So we have that beliefs e∗ are consistent at any s ∈ S, and σ∗ is

a Nash equilibrium given e∗i . Finally, for each i ∈ I, v∗i = UR
i (σ∗|e∗i ) = UR

i (σ∗|e∗∗i ) =, and so

equilibrium (σ∗, e∗∗) induces outcome o∗ = (σ∗, v∗). Altogether, O∗∗ ⊆ O∗. �

Let the set of all distinct selections of U(·) be denoted by R and let ur be its typical

element.40 Call O∗r the set of equilibrium outcomes, given ur.

Claim A.1.1 (Decomposition). Suppose Assumption 1 holds. The set of equilibrium out-

comes satisfies O∗ =
⋃
r∈RO∗r.

Proof: First, as in the proof of Proposition 1, Assumption 1 implies that utility set is non-

empty, U(s) 6= ∅ for any s ∈ S. Next, consider an equilibrium outcome o∗ = (σ∗, v∗) ∈ O∗.
40Observe that if U(·) is finite, there are |R| ≡

∏
s∈S |U(s)| <∞ distinct reduced-form games.
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By definition of equilibrium there exist consistent beliefs e∗, such that σ∗ is Nash equilibrium

given e∗ and (σ∗, e∗) induce utilities v∗. Now for every profile s and player i, let uri (s) ≡
Ui(s, e

∗
i (s)). Then, σ∗ is a Nash equilibrium in Γr = 〈I,S, ur〉, and so o∗ ∈ O∗r ⊆

⋃
r∈RO∗r.

Conversely, consider o∗ = (σ∗, v∗) ∈
⋃
r∈RO∗r. Then σ∗ is a Nash equilibrium for some

reduced-form utilities ur(·) ∈ U(·). Next, for every (i, s), let e∗i ≡ ur−i(s). Since UR
i (s|e∗i ) =

uri (s) for all s and i, the pair (σ∗, e∗) is an equilibrium, and so
⋃
r∈RO∗r ⊆ O∗∗. �

Example 2.2 has two reduced-form games (R = {1, 2}):

G C
G 0, 0 −1, 1
C 1,−1 1, 1

G C
G 2, 2 −1, 1
C 1,−1 1, 1

In the left reduced-form game, the set of equilibrium outcomes is a singleton: O∗1 =

{[(C,C), (1, 1)]}. In the right game, the equilibrium outcome set has three elements: O∗2 =

{[(C,C), (1, 1)], [(G,G), (2, 2)], [(2/3, 1/3)i=1,2, (1, 1)]}, where 2/3 is the chance of playing G.

Notice that the outcome of the left game is also an element of the outcome set of the right

game; thus the equilibrium outcome set coincides with O∗2.

Proposition A.1.1. The set of Pareto efficient outcomes OPareto is non-empty.

Proof: Since U is continuous and bounded (Assumption 1), we have that for any profile s ∈ S,

the set U(s) is non-empty, closed, and bounded. Thus, the set X0 ≡ Σ × (×s∈S U(s)) is

non-empty and compact. Next, for any i ∈ I define sets Xi, i ∈ I, recursively

Xi = arg max
(σ,u)∈Xi−1

∑
s∈S

∏
j∈I

σj(sj)ui(s)

Note that Xi⊆Xi−1; also, Xi 6= ∅ and compact, for Xi−1 6= ∅ and compact (Maximum The-

orem). Next, fix a tuple (σ, u) ∈ XI . We will show that (σ, u) induces a Pareto efficient

outcome o. Consider any o′ ∈ O characterized by (σ′, u′) ∈ X0. If (σ′, u′) ∈ XI , then by

definition, (σ, u) , (σ′, u′) ∈ Xi for all i, and so (σ′, u′) does not Pareto dominate (σ, u). Con-

versely, if (σ′, u′) ∈ X0/XI , then there exists i such that (σ′, u′) ∈ Xi−1 but (σ′, u′) 6∈ Xi.

Since Xi is the set of all profiles that maximize player’s i payoff on Xi−1, (σ, u) must leave

player i better off compared to (σ′, u′). Thus, (σ′, u′) does not Pareto dominate (σ, u); there-

fore, any outcome o characterized by (σ, u) ∈ XI is Pareto efficient. Finally, OPareto is

non-empty, because the set XI is non-empty, XI 6= ∅. �

Example A.1.1. Consider a version of Example 2.2:

Here strategy G is strictly dominant for all consistent beliefs. So this game has two

equilibrium outcomes: o∗H = ((G,G) , (2, 2)) and o∗L = ((G,G) , (0, 0)). Clearly, o∗H Pareto
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dominates o∗L. In this example, players coordinate beliefs on an inefficient solution to the

interdependent utility system. In other words, Inefficiencies do not arise because of the

strategies that both agents elect, but because of the payoff level at which they coordinate their

beliefs, given their choice (G,G).

A.2 Proofs of Section §4

Proof of Proposition 3: First, by Assumption 1, the utility set U(s) 6= ∅ for all s ∈ S. Also,

since utility functions (Ui)i∈I are continuous and bounded, we have that for any profile s,

the set U(s) is non-empty, closed, and bounded. Thus, Ui(s) is compact, and so inf Ui(s) =

min Ui(s). Next, consider an outcome (σ, v) that violates the best response condition, so that

vi(σ−i) > vi for some i. Take any consistent beliefs e(·), satisfying vi =
∑

s∈S Ui(s, ei(s))σ(s)

for all i. Because vi(σ−i) > vi for some i, there must exist a strategy s′i 6= si such that:

vi <
∑

s−i∈S−i

min Ui(s
′
i, s−i)σ−i(s−i) ≤

∑
s−i∈S−i

Ui(s
′
i, s−i, e(s

′
i, s−i))σ−i(s−i),

where the last equality follows by the definition of Ui and the fact that beliefs e are consistent.

Thus, s′i is a profitable deviation for player i, and so (s, v) cannot be an equilibrium outcome.

Conversely, fix an outcome (σ∗, v∗) with vi
(
σ∗−i
)
≤ v∗i for all i (and so vi < ∞). We

introduce some notation to make the argument clearer. For any i ∈ I, define i’s deviation

set as Sdi ≡ {(si, s∗−i) ∈ S : si /∈ supp(σ∗i ) and s∗−i ∈ supp(σ∗−i)} and the residual set

as Sr ≡ S/
(⋃

i∈I Sdi ∪ supp(σ∗)
)
. By construction, supp(σ∗),

{
Sdi
}
i∈I , S

r partition the

strategy profile space S. Now we define weakly consistent beliefs e∗(·). First, for each

s∗ ∈ supp(σ∗), take u(s∗) ∈ U(s∗) ensuring that v∗ =
∑

s∗∈supp(σ∗) u(s∗)σ∗(s∗) and v∗i =∑
s∗−i∈supp(σ∗−i)

u(s∗i , s
∗
−i)σ

∗
−i(s

∗
−i) for all s∗i ∈ supp(σ∗i ), and for all player i ∈ I. Then, assign

e∗i (s
∗) = u∗−i(s

∗) for all i ∈ I. Next, for any i and s ∈ Sdi , take u (s) ∈ U(s) such that

ui (s) = min Ui(s), and for all players let e∗j(s) = u−j (s). Finally, for s ∈ Sr, take any

u(s) ∈ U(s) and let e∗i (s) = u−i(s) for all i. Altogether, e∗ is weakly consistent for all s ∈ S.

Next, by construction of beliefs, it is enough to assure that no player has incentives

to deviate to a pure strategy not in the support of σ∗. This is indeed the case, for since
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Ui(s, e
∗
i (s)) = min Ui(si, s

∗
−i) for all s ∈ Sdi and v∗i ≥ vi

(
σ∗−i
)
, it follows that:

v∗i ≥
∑

s∗−i∈supp(σ∗−i)

min Ui(si, s
∗
−i)σ

∗
−i(s

∗
−i) =

∑
s∗−i∈supp(σ∗−i)

Ui(si, s
∗
−i, ei(si, s

∗
−i))σ

∗
−i(s

∗
−i),

for all si /∈ supp(σ∗i ). Finally, since this logic holds for all i, (s∗, e∗) is a weak equilibrium

inducing a utility profile v∗. Thus, (s∗, v∗) is an equilibrium outcome, by Proposition 2. �

A.3 Proofs of Section §5

Claim A.3.1. For any profile s ∈ S there exist a reduced form utility profile us, us ∈ U(s)

such that us ≤ us ≤ us for all us ∈ U(s). Also, in games with two players, the set U(s) is

totally ordered: for any us, u
′
s ∈ U(s) and i 6= j we have ui,s ≥ u′i,s iff uj,s ≥ u′j,s.

Proof: Fix s ∈ S. Since the utility system U(s, ·) is bounded (Assumption 1), there exists a

closed box B ⊂ RI such that the image of U (and hence all its fixed points) is in B. Consider

a restriction of U (s, ·) to B. Since U (s, ·) is increasing and B is a complete lattice (it is a

closed and bounded box), the set U(s) is a non-empty complete lattice (so it has a maximal

and minimal element), by Tarski’s Fixed Point Theorem. Next, consider a two-player game,

and let us, u
′
s ∈ U(s) with ui,s ≥ u′i,s. Thus, we have uj,s = Uj(s, ui,s) and u′j,s = Uj(s, u

′
i,s),

for j 6= i. Since Uj(s, ·) is increasing, we have uj,s = Uj(s, ui,s) ≥ Uj(s, u
′
i,s) = u′j,s. Reversing

the roles of i and j yields uj,s≥u′j,s iff ui,s≥u′i,s. �

Claim A.3.2. Let I = 2 and fix a profile s. The utility set U(s) has, at most, two elements.

Proof: Suppose wlog that both players exhibit diminishing empathy. For i = 1, 2 let Yi ≡
Ui(s,R) be a target set of utility function Ui(s, ·). Since Ui(s, ·) is strictly concave and hence

continuous, by the Intermediate Function Theorem Yi is convex. Let Ũi : Yj → Yi be a

restriction of Ui(s, ·) to Yj. Observe that any u ∈ U(s) necessarily satisfies u ∈ Y1 × Y2,

and hence it is a solution to Ũi (uj) = ui for i = 1, 2. By construction Ũi is surjective and

since Ui(s, ·) is increasing and strictly concave, it is also strictly increasing and hence Ũi

is injective. It follows that inverse function Ũ−1
2 : Y1 → Y2 is well defined. Finally, Ũ2 is

increasing and strictly concave, and hence, inverse Ũ−1
2 is increasing and strictly convex.

Let ϕ : Y1 → Y2 be defined as ϕ(x) = Ũ1 (x)− Ũ−1
2 (x). Observe that a vector (u1, u2) ∈

U(s) iff ϕ(u1) = 0 and u2 = Ũ2(u1). Function ϕ is the sum of two increasing strictly concave

functions, namely, Ũ1 and −Ũ−1
2 , hence it is strictly concave, and as such it can have at most

two roots. Otherwise one could find u′1 > u′′1 > u′′
′

1 in Y1 such that ϕ(u′1) = ϕ(u′′1) = ϕ(u′′′1 ),

which contradicts the strict concavity of ϕ(·). �
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Claim A.3.3. Fix s ∈ S with U satisfying Inada. Generically, U(s) has two elements or none.

Proof: Let Ũ−1
2 as in the proof of Claim A.3.2. The limit limu1↓inf Y1 ∂Ũ

−1
2 /∂u1 = 0 and

limu1↑supY1 ∂Ũ
−1
2 /∂u1 = ∞, since U2 satisfies Inada. Next, we claim that if U2(s, u1) = Ũ−1

2

and ∂U2(s, u1)/∂u1 6= ∂Ũ−1
2 /∂u1, then there must exist u∗1 6= u1 such that U2(s, u∗1) =

Ũ−1
2 (s, u∗1). Suppose wlog that ∂U2(s, u1)/∂u1 > ∂Ũ−1

2 (s, u1)/∂u1. Then there exists a small

ε > 0 such that U2(s, u1 +ε) > Ũ−1
2 (s, u1 +ε). But, since the respective slopes of U2 and Ũ−1

2

vanish and explode as u1 ↑ ∞, there exists a large η > 0 such that U2(s, u1 +η) < Ũ−1
2 (s, u1 +

η). But then, by the Intermediate Value Theorem, there must exist u∗1 ∈ (u1 + ε, u1 + η)

with U2(s, u∗1) = Ũ−1
2 (s, u∗1). Altogether, if there is unique u1 with U2(s, u1) = Ũ−1

2 (s, u1),

then ∂U2(s, u1)/∂u1 = ∂Ũ−1
2 (s, u1)/∂u1. Since u2 = Ũ−1

2 (s, u1), a unique fixed point implies

that the Jacobian of U(s, u)−u is singular at u = (u1, u2). But then considering a perturbed

utility system U(s, u) + p with p ∈ P ⊂ RI , and by the same logic of the proof of Lemma 1,

the Jacobian of U(s, u)− u is singular only for a negligible set of perturbations. Finally, by

Lemma A.3.2, the set U(s) has generically either none or two fixed points. �

Claim A.3.4. Fix s ∈ S. For any us, u
′
s ∈ U(s) and i 6= j we have: ui,s ≥ u′i,s iff uj,s ≤ u′j,s.

Proof: Let us, u
′
s ∈ U(s) with ui,s ≥ u′i,s. Thus, since Uj(s, ·) is decreasing for j 6= i, we have

uj,s = Uj(s, ui,s) ≤ Uj = u′j,s. Reversing the roles of (i, j) yields uj,s ≥ u′j,s iff ui,s ≤ u′i,s. �

Observation A.3.1. The existence of a symmetric solution is a general feature of symmet-

ric empathic games. An empathic game is symmetric if Si = Sj and Ui(s, ·) ≡ Uj(s, ·) for

all players i ∈ I. Under mild conditions, a symmetric reduced-form utility profile always

exists. Suppose that ui = x ∈ R for all i ∈ I, and let Û(s, ·) : R → R where Û(s, x) ≡
U(s, u−i). Clearly, a symmetric reduced form utility profile is a fixed point of Û(s, x). As-

sume that U(s, ·) is differentiable. Then, by the antipathy assumption: (d/dx)Û(s, x) =∑
6̀=i(∂/∂u`)U(s, u`)|u`=x < 0. Thus, by the Intermediate Value Theorem, a symmetric pay-

off vector exists iff there exists x, x̄ ∈ R with Û(s, x) ≤ 0 ≤ Û(s, x̄). In the example of §5.2,

the utility function U(s, ·) is continuous and obeys U(s, 0)=1≥U(s, 1)=0 at s=(G,G).
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